Изменить стиль страницы

Киньонеро обнаружил, что способ создания продуктов Facebook был почти таким же революционным, как и их результаты. Приглашенный другом на экскурсию по кампусу в Менло-Парке, он был потрясен, заглянув через плечо инженера, вносившего существенные, но неконтролируемые обновления в код Facebook. Убедившись в том, что компания работает гораздо быстрее, чем Microsoft, Киньонеро через неделю получил предложение о работе в Facebook.

Киньонеро начал работать над рекламой, и его время вряд ли могло быть более удачным. Достижения в области машинного обучения и скорость вычислений позволили платформе не только распределять пользователей по демографическим нишам ("одинокая гетеросексуальная женщина в Сан-Франциско, около двадцати лет, интересуется кемпингом и танцами сальса"), но и выявлять корреляции между тем, на что они нажимают, а затем использовать эту информацию, чтобы угадать, какие объявления они сочтут релевантными. Начав с почти случайных предположений о том, как максимизировать шансы на клик, система училась на удачах и промахах, совершенствуя свою модель для предсказания того, какие объявления имеют наилучшие шансы на успех. Вряд ли она была всеведущей - рекомендованные объявления регулярно оказывались необъяснимыми. Но планка успеха в цифровой рекламе была низкой: если 2 процента пользователей нажимали на рекламу, это считалось триумфом. При миллиардах объявлений, просматриваемых каждый день, изменения в алгоритмах, дающие даже скромный выигрыш, могли принести десятки или сотни миллионов долларов дохода. И команда Киньонеро обнаружила, что может вносить такие изменения. "Я сказал своей команде работать быстро, выпускать продукцию каждую неделю", - говорит он.

Быстрые темпы имели смысл. ИИ команды улучшал не только доходы, но и отношение людей к платформе. Более точная нацеленность рекламы означала, что Facebook может зарабатывать больше денег на каждом пользователе, не увеличивая рекламную нагрузку , и не так уж много того, что могло пойти не так. Когда Facebook предлагал подросткам крем для зубных протезов, никто не умер.

Реклама стала плацдармом для машинного обучения в Facebook, и вскоре все захотели получить свой кусочек действия. Для руководителей, которым было поручено увеличить количество вступающих в группы Facebook, добавленных друзей и сделанных постов, привлекательность была очевидна. Если методы Киньонеро могли повысить частоту взаимодействия пользователей с рекламой, они могли повысить частоту взаимодействия пользователей со всем остальным на платформе.

Все команды, отвечающие за ранжирование или рекомендации контента, бросились переделывать свои системы так быстро, как только могли, что привело к взрывному росту сложности продукта Facebook. Сотрудники обнаружили, что самые большие успехи часто достигаются не в результате целенаправленных инициатив, а в результате простого возиться. Вместо того чтобы переделывать алгоритмы, что было медленно, инженеры добивались больших результатов с помощью быстрых и грязных экспериментов по машинному обучению, которые сводились к тому, что они бросали на стену сотни вариантов существующих алгоритмов и смотрели, какие из них прижились - какие лучше всего работают с пользователями. Они не обязательно знали, почему та или иная переменная имеет значение или как один алгоритм превосходит другой, например, в предсказании вероятности комментирования. Но они могли продолжать возиться, пока модель машинного обучения не создавала алгоритм, который статистически превосходил существующий, и это было достаточно хорошо.

Трудно представить себе подход к созданию систем, который в большей степени воплощал бы лозунг "Двигайся быстро и ломай вещи". Facebook хотел только большего. Цукерберг привлек Янна ЛеКуна, французского ученого-компьютерщика, специализирующегося на глубоком обучении, то есть на создании компьютерных систем, способных обрабатывать информацию способами, вдохновленными человеческим мышлением. Уже прославившийся созданием основополагающих методов искусственного интеллекта, благодаря которым стало возможным распознавание лиц, ЛеКун возглавил подразделение, которое должно было вывести Facebook в авангард фундаментальных исследований в области искусственного интеллекта.

После успеха с рекламой перед Киньонеро была поставлена не менее сложная задача: как можно быстрее внедрить машинное обучение в кровеносную систему компании. Его первоначальный штат из двух десятков человек - команда , ответственная за создание новых основных инструментов машинного обучения и обеспечение их доступности для других подразделений компании, - вырос за три года, прошедшие с момента его найма. Но он все еще не был достаточно большим, чтобы помочь каждой команде, которая хотела получить помощь в области машинного обучения. Навыки построения модели с нуля были слишком узкоспециализированными, чтобы инженеры могли легко их освоить, а увеличить число докторов наук в области машинного обучения, разбрасываясь деньгами, было невозможно.

Решением стало создание FB Learner, своего рода версии машинного обучения "по цифрам". Он упаковал методы в шаблон, который могли использовать инженеры, в буквальном смысле не понимающие, что они делают. FB Learner сделал для машинного обучения внутри Facebook то, что когда-то сделали сервисы вроде WordPress для создания веб-сайтов, избавив от необходимости возиться с HTML или настраивать сервер. Однако инженеры, о которых идет речь, не создавали блог, а возились с внутренностями того, что быстро становилось ведущей глобальной коммуникационной платформой.

Многие в Facebook знали о растущем беспокойстве по поводу искусственного интеллекта за стенами компании. Плохо разработанные алгоритмы, призванные поощрять хорошее здравоохранение, наказывали больницы, которые лечили более больных пациентов, а модели, призванные количественно оценить риск повторного совершения преступления кандидатом на условно-досрочное освобождение, оказывались предвзятыми в пользу содержания чернокожих в тюрьме. Но в социальной сети эти проблемы казались далекими.

Один из заядлых пользователей FB Learner позже охарактеризовал массовое распространение машинного обучения в Facebook как "вручение ракетных установок двадцатипятилетним инженерам". Но в то время Киньонеро и компания говорили об этом как о триумфе.

"Инженеры и команды, даже с небольшим опытом, могут с легкостью создавать и проводить эксперименты и внедрять продукты на основе искусственного интеллекта в производство быстрее, чем когда-либо", - объявил Facebook в 2016 году, хвастаясь тем, что FB Learner ежедневно получает триллионы точек данных о поведении пользователей и что инженеры проводят на них 500 000 экспериментов в месяц.

Огромное количество данных, которые собирал Facebook, и настолько хорошие результаты таргетинга рекламы, что пользователи регулярно подозревали (ошибочно) компанию в подслушивании их разговоров в офлайне, породили утверждение, что "Facebook знает о вас все".

Это было не совсем верно. Чудеса машинного обучения заслонили его пределы. Рекомендательные системы Facebook работали на основе сырой корреляции между поведением пользователей, а не на основе выявления их вкусов и интересов и последующей подачи контента на их основе. News Feed не могла сказать, нравится ли вам катание на коньках или на велосипеде, хип-хоп или K-pop, и не могла объяснить человеческим языком, почему одно сообщение появилось в вашей ленте выше другого. Хотя эта необъяснимость была очевидным недостатком, системы рекомендаций на основе машинного обучения говорили о глубокой вере Цукерберга в данные, код и персонализацию. Освобожденные от человеческих ограничений, ошибок и предвзятости, алгоритмы Facebook были способны, по его мнению, на беспрецедентную объективность и, что, возможно, более важно, эффективность.

Отдельное направление работы по машинному обучению было посвящено выяснению того, какой контент на самом деле содержится в постах, рекомендованных Facebook. Известные как классификаторы, эти системы искусственного интеллекта были обучены распознаванию образов на огромных массивах данных. За много лет до создания Facebook классификаторы доказали свою незаменимость в борьбе со спамом, позволив поставщикам электронной почты выйти за рамки простых фильтров по ключевым словам, которые блокировали массовые письма, скажем, о "Ви@гре". Получив и сравнив огромную коллекцию писем - некоторые из них были помечены как спам, а некоторые как не спам, - система машинного обучения могла разработать свой собственный рубрикатор для их различения. После того как этот классификатор будет "обучен", его можно будет пустить в свободное плавание, анализируя входящую почту и предсказывая вероятность того, что каждое сообщение будет отправлено во входящие, в папку нежелательной почты или прямиком в ад.

К тому времени, когда в Facebook начали появляться эксперты по машинному обучению, список вопросов, на которые пытались ответить классификаторы, вышел далеко за рамки "Это спам?", во многом благодаря таким людям, как ЛеКун. Цукерберг был уверен в будущем прогрессе этой технологии и ее применении в Facebook. В 2016 году он предсказывал, что в ближайшие пять-десять лет классификаторы превзойдут человеческие способности к восприятию, распознаванию и пониманию, что позволит компании закрывать от неправильного поведения и совершать огромные скачки в соединении мира. Это предсказание оказалось более чем оптимистичным.