Механизмы распространения нефти в океане
Мореплавателям давно был известен способ умерить штормовые волны. Для этого за борт выливали нефть или масло, пленка которых и оказывала влияние на волнение, уменьшая поверхностное натяжение. Она гасила не только капиллярные, но и гравитационные волны длиною до полуметра.
Нефтяная пленка — одна из самых распространенных форм существования нефти как загрязняющего океан вещества. Отличительное свойство пленок нефти, в частности, заключается в том, что они никогда не растекаются до мономолекулярного слоя. Экспериментально удалось измерить минимальную толщину пленки — 0,15 микрона.
Распространение нефтяной пленки по поверхности океана — это наложение двух процессов: первый — перенос пленки как целого под воздействием ветра, течений и поверхностных волн, одним словом, дрейф пленки; и второй — растекание пленки на спокойной воде, приводящее к увеличению ее площади с течением времени. Вначале растекание нефти по поверхности моря происходит под действием силы тяжести аналогично тому, как на гладкой горизонтальной поверхности растекаются лужи воды. Дальнейшее растекание нефтяной пленки создается действием силы поверхностного натяжения. Однако, как отмечалось выше, пленка не растекается до мономолекулярного слоя, просто не успевает, так как начинаются изменения физико-химических свойств нефти и сила поверхностного натяжения ослабевает. Из экспериментов известно, что в спокойной воде 1 кубометр сырой нефти за 10 минут растекается в пятно диаметром 48 метров. Под действием ветра создается дрейф поверхностного слоя воды со скоростью, составляющей 3–4 процента от средней скорости ветра. С такой же скоростью дрейфует и нефтяная пленка. Но дрейф пленки может происходить также в результате действия сгонно-нагонных или приливных течений. В этом случае скорость движения пленки совпадает со скоростью этих течений. Нефтяная пленка может перемещаться и вследствие так называемого волнового дрейфа. Его природа заключается в том, что у поверхности взволнованного моря за счет вязкости образуется тонкий вихревой слой, который приводит к возникновению дополнительного индуцированного течения по направлению распространения волны.
Если поверхность воды покрыта пленкой, то происходит затухание волн, причем их количество движения передается течению и скорость дрейфа увеличивается. Если считать пленку нефти нерастяжимой, то в этом случае пятна пленки перемещаются быстрее элементов жидкости на окружающей чистой воде. Комбинированный дрейф нефтяной пленки, вызванный ветром и волнением, исследовался в лабораторных экспериментах. Оказывается, простого арифметического сложения дрейфа под действием ветра и под действием волнения не происходит. Напротив, ветровой дрейф несколько замедляется волнением. Предполагают, что это происходит в результате отрыва потока на гребне волны, вследствие чего за гребнем должен существовать участок пониженной передачи количества движения от ветра к воде. Однако это объяснение еще нуждается в экспериментальной проверке.
Несколько слов о судьбе нефтяной пленки. Эксперименты в Каспийском море показали, что даже после прекращения действия силы поверхностного натяжения площадь пленки продолжает расти за счет воздействия турбулентных вихрей. Установлена эмпирическая зависимость — площадь пленки растет пропорционально кубу времени. Дальнейшее поведение нефти неоднозначно и зависит от особенностей физико-химических свойств сортов нефти и гидрометеорологических условий: ветра, волнения, температуры воды и воздуха, солнечной радиации и т. п. В одних ситуациях нефть распространяется в виде сликов, в других — весьма быстро образуются эмульсии.
Натурные наблюдения в бухте Чедабакто (Новая Шотландия) после аварии танкера «Эрроу», о которой рассказывалось выше, дали интересную информацию о судьбе взвешенных в воде частиц нефти. Танкер сел на мель 4 февраля 1970 года, и за два с половиной месяца на поверхность воды в бухте вылилось почти 9,5 тысячи тонн нефти. Под действием турбулентных движений происходило дробление взвешенных частиц нефти. Когда же частица становится размером в несколько микрон, она растворяется или уничтожается в силу биологических процессов. Математическая модель этих явлений, учитывающая энергетику дробления частиц нефти, была разработана американским ученым В. Форрестером. Ему удалось объяснить наблюдаемые распределения частиц нефти по их размерам.
В связи с физико-химическими изменениями свойств нефти, а также в связи с биологическими процессами или изменениями свойств морской воды нефтепродукты могут всплывать на поверхность или опускаться на дно. Интересно, что если нефть попадет на дно и если она не будет погребена под плащом осадков, то может совершенно неожиданно всплыть на поверхность. Почему? Возможно, произошли физико-химические изменения нефти или ее окисление бактериями, в результате которых сгустки нефтепродуктов становятся легче. Могли измениться и характеристики среды, например температура воды. Ее повышение увеличивает растворимость нефти, сгустки «облегчаются» и также оказываются у поверхности.
Попавшие в океан нефть и нефтепродукты могут переноситься по океанской поверхности от мест разлива на большие расстояния под действием ветров и циркуляции вод.
Направление дрейфа, как считают многие исследователи, совпадает с направлением ветра, однако есть данные о том, что дрейф нефтяной пленки может отклоняться по часовой стрелке (в северном полушарии). Такое отклонение связано с действием силы Кориолиса.
Особенности горизонтальной океанской циркуляции создают неравномерность распределения нефти и нефтепродуктов в форме эмульсий, плавающих пленок и смоляных шариков. В циклонических зонах (в северном полушарии — циркуляция вод против часовой стрелки) максимальное скопление нефти и нефтепродуктов наблюдается на периферии зоны, а минимум — в ее центре. В антициклонических зонах, наоборот, максимальная концентрация достигается в центре, а минимальная — на периферии. Интересно распределение нефти и нефтепродуктов в больших океанских течениях, таких, например, как Гольфстрим. Кстати, эта мощная океанская система за год переносит около 1–1,5 миллиона тонн техногенных и антропогенных углеводородов. В стрежневой полосе Гольфстрима наблюдается низкое содержание нефти, а на периферии — повышенное. Последнее связано со сносом на периферию за счет поперечной составляющей течения.
Для прогнозирования последствий аварийного разлива нефти, происшедшего на основных трассах танкерного флота, следует знать, куда направлены преобладающие ветры, как они изменяются, какова средняя картина течений. Однако прогнозирование дрейфа пятен нефти — дело непростое. 10 лет назад в Массачусетском технологическом институте США были разработаны модели распространения нефтяных пятен на обширной акватории у берегов Новой Англии. В течение нескольких недель проводились эксперименты с пятнами специально разлитой на поверхности океана нефти, уточняющие скорость и характер их перемещения, а также скорость разложения разлитой нефти. Эксперименты сопровождались тщательными измерениями течений, волнения и ветров. В программу для ЭВМ, однако, пришлось вводить осредненные данные о ветре и модели течений для различных ситуаций. Естественно, что многие детали гидродинамического и ветрового режима оказались неучтенными. В результате расчеты по теоретическим моделям плохо согласовывались с реальными данными. Созданные с помощью ЭВМ модели траекторий движения пятен нефти около побережья к тому же были слишком упрощенными, поскольку по причинам математического характера и особенностей программирования удается решить задачу лишь для случая, когда берег представляется в виде отрезков прямых линий, которые не воспроизводят многих деталей реальных очертаний бухт и заливов. Согласитесь, что такое представление береговой линии очень приблизительно. Особенно усложняется задача в районе шхер с десятками небольших островков, у которых нефтяное пятно разбивается на множество пятен меньших размеров. Неудивительно поэтому, что полученные в экспериментах данные о скорости разложения разлитой нефти (когда остатки нефтяной пленки превращаются в комки мазута) и сведения, которые выдала ЭВМ, были различны.