Изменить стиль страницы

В последние годы этой задачей занимались многие, и советские и иностранные ученые, и наконец ее удалось разрешить в форме, вполне пригодной для применения на практике. Первый в мире "радиозонд" был выпущен нашим аэрологом П. А. Молчановым из Аэрологической обсерватории в Слуцке (Павловске) 30 января 1930 года.

Один из принципов передачи метеорологических данных по радио — следующий. Представим себе циферблат, по которому посредством часового механизма движется равномерно "стрелка времени" Т. На циферблате имеется контакт А, который замыкается при прохождении над ним стрелки времени и дает определенный сигнал. По тому же циферблату перемещается стрелка температуры t, соединенная с приемником температуры; ее движение будет уже не равномерное, а будет зависеть от изменения температуры за данный промежуток времени. Проходя над этой стрелкой, стрелка времени также дает контакт. Зная промежуток времени, который прошел между постоянным контактом А (его можно для отличия сделать, например, двойным) и контактом со стрелкой температуры, можно определить, на сколько изменилась температура, и если известно, какая она была в начале, то легко вычислить и ее значение в любой момент, когда происходит контакт между стрелками. Если иметь еще несколько стрелок для давления, влажности и т. п., то можно получить значения и для этих элементов; надо только для каждого элемента установить свои сигналы. Передавая их помощью радиопередатчика, можем уловить их в любом месте, где будет поставлен радиоприемник.

Занимательная метеорология _63.jpg

Рис. 63. Схема радиозонда.

Техническое осуществление этой простой идеи оказывается однако довольно сложным, и хотя такой прибор и был построен по указаниям П. А. Молчанова, однако, как наш первый "радиозонд", так и дальнейшие, пускаемые у нас, основаны на ином принципе.[12] Там на первый взгляд дело обстоит сложнее, но построить такой прибор легче и дешевле. Первый радиозонд достиг высоты около 10 км, и уже через полчаса переданные им сведения были сообщены по телеграфу в Бюро погоды.

Прибор радиозонд вместе с батареями, передатчиком и т. п., — тяжелый, а потому приходится его поднимать на очень больших шарах или на целой гирлянде обычных зондовых оболочек. Тут-то как раз особенно хорошо иметь большие оболочки, так как только на них можно получить большую высоту. Радиозонд, поднятый на старой метровой оболочке "Кр. треугольника", дал сразу высоту больше 15 км; радиозонды на большом числе (10–12) оболочек диаметром 30 см обычно достигают не более 10–13 км высоты.

Занимательная метеорология _64.jpg

Рис. 64. Подъем радиозонда на 11 шарах.

РАДИОЗОНДЫ В АРКТИКЕ

Наша Аэрологическая обсерватория пускает теперь радиозонды ежедневно, и они нередко достигают стратосферы. Тут не приходится беспокоиться, найдется прибор или нет: он уже сделал свое дело, сообщил обо всем, что делается в высоких слоях воздуха, и хотя конечно желательно, чтоб он не пропал, но результаты и в случае пропажи получены полностью. Поэтому такие приборы незаменимы на полярных станциях, и для исследований во время Полярного года (1932–1933) их было построено множество. В 1931 г., во время полета цеппелина "LZ—127" в Арктику, П. А. Молчановым, принимавшим участие в полете, было выпущено четыре радиозонда. Три из них достигли высоты более 16 км и дали прекрасные результаты. На Земле Франца-Иосифа и на Новой Земле ежемесячно производятся наблюдения помощью радиозондов и получено много интересных данных с больших высот. С простыми зондами в Арктике ничего не поделаешь — их могли бы найти разве белые медведи: хотя сейчас наша Арктика и не представляет собой ледяной пустыни на всем протяжении, но все же мало вероятно, чтоб такой прибор попал в руки человека.

Занимательная метеорология _65.jpg

Рис. 65. Радиозонд.

РАДИОЗОНДЫ И СУХОВЕИ

Одна из важнейших проблем нашего хозяйства— борьба с засухами и суховеями — требует для своего разрешения изучения хода температуры и влажности в высоких слоях воздуха. Но засушливые районы местами мало населены, пустынны; зонды там не найдутся; змеи могут быть применимы лишь отчасти. Здесь опять приходит на помощь радиозонд. Сейчас ряд змейковых и радиозондовых станций организуется на юго-востоке Союза, и таким образом радиозонд сыграет немаловажную роль в разрешении важной хозяйственной задачи.

СТАНЦИИ БЕЗ НАБЛЮДАТЕЛЕЙ

Передача метеорологических данных но радио возможна, конечно, и не только из свободной атмосферы, а из любого места на земной поверхности. В интересующем нас месте — где-нибудь на высокой горе, среди пустыни, во льдах полярных морей, — мы можем установить "автоматическую станцию", и она будет без человека отмечать состояние погоды и передавать на нашу приемную станцию. Если надо передать много элементов, это, конечно, становится делом довольно сложным, но в конце концов все это только вопрос техники. Здесь уже достигнуто многое, и надо думать, что "автоматические метеорологические станции" — дело уже близкого будущего.

Пробная автоматическая станция системы Молчанова установлена сейчас на пике Сталина экспедицией Горбунова, намечена также установка станции на Земле Франца-Иосифа.

ШАРЫ-ПИЛОТЫ

Так называются резиновые шары значительно меньшего размера, чем шары-зонды. На них не подвешивается никаких приборов, и они выпускаются, так сказать, безвозвратно, — только для того, чтоб, следя за их движением по воздуху, определить; какой дует ветер. Так по листку, брошенному в водоворот, мы можем следить за движением водяных струек.

За шарами-пилотами наблюдают при помощи особых приборов, которые называются теодолитами. Каждую минуту, смотря на шар в трубу теодолита, отсчитывают по его кругам угол, под которым шар виден над горизонтом, или "вертикальный угол", и угол, который вертикальная плоскость, проходящая через шар, составляет с плоскостью меридиана — "горизонтальный угол". Наблюдая за шаром в два таких теодолита, установленных в 1–2 км один от другого, по двум парам углов в каждую минуту можно найти высоту шара.

Занимательная метеорология _66.jpg

Рис. 66. Наполнение шара-пилота водородом из трубы.

Занимательная метеорология _67.jpg

Рис. 67. Теодолит для наблюдения за пилотами.

Прежде чем самому пускаться в воздушное путешествие, авиатор пускает шар-пилот. Зная его размеры, он может определить, на сколько метров шар поднимается за каждую минуту, а, стало быть, знает и его высоту в любой момент от начала подъема. Следя за ним в теодолит, он в те же моменты знает и его угловую высоту над горизонтом и его горизонтальный угол. Отсюда, как видно из чертежа, определяется и горизонтальное движение шара от одной минуты до другой, иными словами ветер, так как шар движется вместе с ветром. Деля путь, пройденный шаром за минуту, на 60, получаем скорость ветра в метрах в секунду. На практике все это выполняется чрезвычайно быстро при помощи разных приспособлений и таблиц, и едва успеет шар лопнуть или скрыться в облаках, как опытные наблюдатели уже сообщают летчику, на какой высоте ему ждать сильного ветра, на какой — затишья, и на какой высоте плавают облака.

вернуться

12

На принципе перемещения пера по особым гребенкам — так называемый "гребенчатый прибор".