Рис. 26. Ток продолжает идти некоторое время после размыкания рубильника и образует яркую искру.
Явление самоиндукции особенно заметно, когда пропускают переменный ток по катушке с железным сердечником. При переменном токе движение зарядов происходит то в одну, то в другую сторону. Ток последовательно сначала нарастает, потом убывает, меняет направление и нарастает в другом направлении, вновь убывает, опять меняет направление и т. д. Он, а следовательно, и образуемое им магнитное поле все время меняются, а индуктивное действие поля все время мешает этим изменениям. Оно ослабляет ток.
Если включить в цепь лампочки накаливания, питаемой переменным током, катушку с железным сердечником, то она настолько ослабит ток, что лампочка почти потухнет. Если же сердечник вынуть, магнитное поле ослабеет, индуктивное действие его уменьшится, ток усилится и лампочка загорится (рис. 27).
Рис. 27. Железный стержень, вложенный в катушку, настолько увеличивает ее сопротивление переменному току, что лампочка гаснет.
Движения магнита рождают ток
Исследуя явление электромагнитной индукции, Фарадей решил воспользоваться для опытов самым обыкновенным магнитом. Ведь и постоянный магнит окружен магнитными силовыми линиями. Если постоянный магнит вдвигать внутрь проволочной катушки так, чтобы магнитные силовые линии пересекали витки проволоки, то в ней должен возникнуть электрический ток!
Для проверки своего вывода Фарадей намотал 220 футов медной проволоки на картонный цилиндр. Концы проводов от этой катушки он присоединил к гальванометру.
Затем он взял стальной намагниченный стержень и стал двигать его взад и вперед внутри своей катушки. Каждое движение магнита вызывало появление индуктивного тока.
Фарадей вдвигал стержень, и стрелка гальванометра отклонялась в одну сторону, а когда он выдвигал стержень, — стрелка отклонялась в другую сторону. Через гальванометр шел ток, и это был ток, рожденный не другим током, а движением обыкновенного магнита. Цель, которую преследовал Фарадей — «доказать неразрывную связь между электрическими и магнитными явлениями», была достигнута (рис. 28).
Рис. 28. Картина опыта Фарадея: движение намагниченного стержня вызывает образование электрического тока в проволочной катушке.
После открытия электромагнитной индукции Фарадей продолжал свои исследования. В январе 1833 года он закончил новую работу и установил тождественность так называемого «обыкновенного» электричества, возбуждаемого трением, и «гальванического», — возникающего в батарее.
Открытие электромагнитной индукции произвело переворот и в технике и в науке.
Начиная с 1600 по 1800 год — в течение двух веков — ученые исследовали только электрические заряды, их образование, накапливание, взаимодействие между собой, а также действие электрических разрядов.
С 1800 по 1831 год, то есть до открытия электромагнитной индукции, ученые все свое внимание обратили на новое явление — движение зарядов по проводникам исследовали особенности прохождения тока в металлах и жидкостях.
С 1831 года начинается новая эпоха. Ученые углубляются в изучение свойств полей — электрического и магнитного.
Теория Фарадея встречает возражения
Известие об открытии электромагнитной индукции облетело все академии мира. Ученые на равные лады и каждый по-своему повторяли опыты Фарадея. Некоторые замечали новые особенности этого явления, ставившие их в тупик. Возражения против выводов Фарадея сыпались, как желуди с дуба в ветреный день. У индуктивного тока обнаруживали какие-то особые свойства, отличающие его будто бы от тока, поставляемого обычной гальванической батареей. Было объявлено о существовании нового, «индуктивного» электричества.
Нашлись также «ученые», которые стали доказывать, что электромагнитная индукция позволяет осуществить вечное движение, и в подтверждение ссылались на опыты Фарадея с катушкой и магнитом, когда движение магнита внутри катушки вызывало в проволочной обмотке индуктированный ток.
Фарадей объяснял смысл своего опыта так: силовые линии магнитного поля, окружающего железный стержень, пересекают витки проволочной катушки и тем самым вызывают в ней ток.
Такое объяснение правильно, но оно не исчерпывает сути явления. Превратно толкуя результаты опыта, некоторые физики вообразили, что ток в данном случае рождается магнитом. А так как магнит, сколько его ни двигай взад и вперед, не портится, не ослабевает, и его «сила» никак не расходуется, то, очевидно, катушка с магнитом внутри является настоящим вечным двигателем, способным рождать электрическую энергию из ничего.
Основной и всеобщий ломоносовский закон: «из ничего не может возникнуть что-то» был чужд и непонятен большинству ученых того времени. Даже позже, в 1851 году, немецкого ученого Юлия Майера, который собрал неопровержимые доказательства в пользу закона сохранения энергии, попросту объявили умалишенным и поместили в сумасшедший дом.
Фарадей не довел до конца объяснение открытого им явления. Этим-то и воспользовались невежды, пытавшиеся воскресить порочную идею вечного двигателя.
Решительное слово Ленца
В 1833 году исследованиями электромагнитной индукции занялся молодой русский ученый Э. X. Ленц. Он весьма глубоко разобрал все возражения, выдвинутые против Фарадея, и методично, многочисленными опытами, показал, что все эти возражения и опровержения основаны на ошибках тех людей, которые повторяли опыты Фарадея. Они либо не умели правильно поставить эти опыты, либо совершенно произвольно их истолковывали.
Особо тщательно Ленц изучал взаимодействие между магнитом и проволочной катушкой. Он установил, что приближение намагниченного стержня к замкнутой[2] катушке вызывает в ней индуктивные токи такого направления, что их магнитное поле противодействует, сопротивляется движению стержня. Магнитное поле катушки выталкивает назад магнитный стержень, и для того, чтобы вдвинуть его в катушку, необходимо преодолеть это сопротивление, то есть совершить определенную работу против сил магнитного поля индуктивного тока.
Индуктивный ток, возникая в катушке, не рождается из ничего. Для его образования приходится затрачивать энергию, то есть работать. Значит, энергия не рождается, а лишь преобразуется: механическая энергия превращается в электрическую.
Если к проволочной катушке поднести железный стержень, а затем пропустить по катушке достаточно сильный ток, то катушка втянет в себя стержень, то есть электрическая энергия перейдет в механическую — в движение стержня.
Ленц нашел также закон преобразования электрической энергии в тепловую (рис. 29).
Рис. 29. Изображен опыт Ленца: ток, проходя по спирали, которая погружена в воду, нагревает ее, а приборы измеряют затраченную электроэнергию, термометр показывает выделение тепла.
Он ясно показал, что и для электрических явлений закон сохранения энергии остается незыблемым. И впервые мир услыхал от Ленца новое слово — электрическая энергия.
Энергия, затрачиваемая током на преодоление сопротивления проводника, превращается в тепловую энергию. Мы пользуемся ею для нагревания воды в электрическом чайнике, для накаливания нитей осветительных лампочек. В электромоторах электрическая энергия превращается в механическую работу и т. д.
Безграничны области применения этого вида энергии, впервые подробно изученной Ленцем.
Появляются новые термины
Закончив опыты с электромагнитной индукцией, свою следующую работу Фарадей посвятил исследованию химического действия тока. Ученый стал пропускать электрический ток через различные растворы, наблюдая, как под действием тока разлагаются химические соединения.
2
Индуктивный ток не может возникнуть в разомкнутой катушке, около нее не образуется магнитного поля, и она не мешает движению магнита.