Иногда с регулированием числа оборотов совмещается и другое назначение колес: изменение направления оси вращения, когда, например, требуется передать вращение от горизонтальной ведущей оси к вертикальной ведомой.

Примеры этому можно видеть в старых конструкциях швейных машин, в ручном сверлильном станке и в дрели, в ветряной мельнице. В ветряной мельнице ветер приводит во вращение горизонтальную ось, которая, в свою очередь, вращает вертикальные валы, на которых укреплены жернова. В конном приводе происходит обратное явление: вертикальное вращение ведущей оси преобразовывается во вращение горизонтального вала, приводящего в движение молотилку или какую-либо другую машину. В автомобиле вращение вала, идущего вдоль корпуса, преобразуется во вращение полуосей, несущих колеса и расположенных поперек.

Рассмотрим теперь, как же происходит передача вращения от одной оси к другой.

В простейшем случае два колеса с параллельными осями вращения плотно соприкасаются своими ободами. Если теперь одно из колес начнет вращаться (ведущее колесо), то благодаря трению между ободами начнет вращаться и второе.

При отсутствии скольжения колеса перекатываются одно по другому, т. е. пути, проходимые точками, лежащими на их ободах, равны. Это справедливо при всех диаметрах колес. Стало быть, большее колесо будет делать, по сравнению со связанным с ним меньшим, во столько же раз меньше оборотов, во сколько раз его размеры превышают размеры последнего.

В простейшем виде такая передача трением, или, как ее иногда называют, фрикционная (от латинского — «фрикцио» — трение) передача, встречается сравнительно редко, главным образом там, где передаваемые усилия не очень велики и где, подчеркнем, не требуется вполне точного соотношения между числами оборотов зацепленных осей.

Так сцеплен с ободом велосипедного колеса вал маленькой динамомашины, питающей фонарь. Так же соединяются ведущее колесо швейной машины и колесо приспособления, с помощью которого наматывается нитка на шпульку.

Иногда передачей трением пользуются в небольших сверлильных станках. На рис. 21 изображен пресс с фрикционной передачей.

Беседа о колесе i_022.jpg

Рис. 21. Пресс с фрикционной передачей.

Ведомая и ведущая оси расположены под прямым углом друг к другу и заканчиваются дисками. Ведущая ось имеет два диска, расположенные по обеим сторонам ведомого диска, чтобы иметь возможность изменять направление вращения горизонтального диска, не меняя направления вращения ведущей оси. Если левый ведущий диск прижат к ведомому горизонтальному диску, то последний приходит во вращение в одну сторону; если же правый ведущий диск прижат к нему, то горизонтальный диск вращается в противоположную сторону.

Соединение двух колес ремнем во многих случаях удобнее непосредственного их соприкосновения. Во-первых, при этом можно благодаря упругости ремня не выдерживать с большой точностью расстояния между осями. Во-вторых, на каждую из осей можно насадить ряд колес различного диаметра и накидывать ремень на различные пары. Если диаметр колеса на одной оси большой, а на второй малый, то вторая ось будет делать больше оборотов, чем первая, и наоборот. Таким образом легко менять соотношение чисел оборотов осей.

В этом случае колеса, насаженные на оси, называются «ступенчатыми шкивами», а сцепленная пара осей — трансмиссией (от латинского слова «трансмиттере» — передавать, пересылать) (рис. 22).

Беседа о колесе i_023.jpg

Рис. 22. Схема трансмиссии.

Диаметры шкивов подбираются таким образом, чтобы один и тот же ремень можно было с одинаковым натяжением накидывать на любую пару шкивов.

Обратите внимание на очертание каждого из шкивов: посредине они немного толще. Для чего это сделано? Такое утолщение необходимо для того, чтобы ремень не соскакивал на ходу. Если такого утолщения не имеется, то трансмиссия будет работать только при совершенно точно сшитом плоском ремне и строго параллельных осях; если же ремень не точно пригнан (а так всегда бывает на практике), то одним краем он будет немного плотнее прижат к шкиву, чем другим, и станет косо. Прижатая сторона у него будет сильнее натянута, кромка ремня уже не сможет двигаться параллельно окружности шкива, и ремень будет сбегать к середине шкива и вскоре соскочит.

На первый взгляд может показаться, что утолщение на шкиве никак не задержит такого перекоса и сбегания ремня. Однако тщательное рассмотрение вопроса показывает, что утолщение это способствует нормальной работе трансмиссии. Если ремень начнет соскальзывать с середины шкива, то одна сторона его (находящаяся ближе к середине) будет натягиваться сильнее, чем другая; благодаря этому обстоятельству ремень, слегка соскользнувший с середины шкива, перекашивается и начинает снова наползать на нее. Иными словами, наличие утолщения на шкиве способствует возвращению ремня в исходное положение.

Рассмотрим теперь другой вид сцепления колес, осуществляемый с помощью зубцов. Зубчатые колеса возникли, по-видимому, более двух тысячелетий тому назад. Но широкое применение получили они лишь в течение последних шести-семи веков.

Характерная особенность зубчатого зацепления заключается в том, что числа зубцов большого и малого колес должны выражаться целыми числами.

Для того, чтобы при равномерном вращении одного колеса второе вращалось тоже равномерно, зубцам необходимо придать особое очертание, при котором движение колес совершилось бы так, как будто они перекатываются одно по другому без скольжения, тогда зубцы одного колеса будут входить во впадины другого (рис. 23).

Беседа о колесе i_024.jpg

Рис. 23. Схема зубчатого зацепления.

При этом они должны располагаться свободно, но, по возможности, с малыми зазорами, иначе либо колеса нельзя будет повернуть, либо же они будут иметь «мертвый ход» и при перемене направления вращения или при изменении нагрузки станут отходить одно от другого, в результате чего колеса будут ударяться и, вследствие этого, быстро изнашиваться.

Мы можем примириться с тем, что зубцы будут скользить один по другому (при хорошо обработанных поверхностях и хорошей смазке трение будет невелико), но мы никоим образом не можем допустить, чтобы зубец одного колеса отходил от другого или же врезался в него.

Рассмотрим несколько наиболее употребительных зубчатых зацеплений. Для преобразования вращения в одной плоскости во вращение в другой плоскости при малых скоростях уже в древности была изобретена червячная передача (сочетание винта и зубчатого колеса), широко применяемая и в наше время (рис. 24).

Беседа о колесе i_025.jpg

Рис. 24. Червячная передача.

В стенных часах и будильниках применяются зацепления, в которых большее колесо является зубчатым в обычном смысле этого слова, т. е. по его окружности нарезаны зубцы, тогда как соединенное с ним малое колесо состоит из ряда стержней, закрепленных концами в обоймах. Такое зацепление носит название цевочного зацепления (рис. 25).

Беседа о колесе i_026.jpg

Рис. 25. Схема цевочного зацепления.

На рис. 26 изображена водоподъемная машина с цевочным зацеплением.

Беседа о колесе i_027.jpg

Рис. 26. Водоподъемная машина XVI в. с червячной и цевочной передачами.

В случае цевочного зацепления очень легко определить вид зубца колеса. Как уже было сказано, мы должны добиться, чтобы во все время работы колес они вращались равномерно и все время находились в сцеплении. В данном случае это означает, что стержень малого колеса, раз соприкоснувшись с зубцом, должен все время к нему прилегать до тех пор, пока не сойдете него у вершины зубца.