Изменить стиль страницы

Гедройц экспериментально доказал, что при засолении натриевыми солями (а в природе засоление практически всегда носит такой характер) в почве не только накапливаются сульфаты и хлориды, но натрий входит в поглощающий комплекс, вытесняя оттуда часть кальция и магния. Подобную почву ученый и предложил именовать солончаковой, или солончаком. Следовательно, в солончаке ПК содержит Са2+, Mg2+ и Na+, причем натрий может преобладать и ПК в основном становится «натриевым». Солончаки образуются в аридных ландшафтах на участках близкого залегания грунтовых вод — на поймах и дельтах, низких побережьях, в озерных котловинах и т. д. Весьма характерны солончаки для пойм южных рек — Сырдарьи, Амударьи, Куры, Терека, низовьев Дона, Волги, Урала и т. д.

Промывая образцы солончаков пресной водой, Гедройц добился удаления солей из почвы, но поглощающий комплекс почвы продолжал содержать натрий. Такую почву, в верхних горизонтах которой уже нет растворимых солей, но ПК содержит много обменного натрия (более 30% суммы обменных катионов), Гедройц предложил именовать солонцом. Следовательно, солонцы образуются из солончаков при их рассолении, когда растворимые соли удаляются, по натрий сохраняется в поглощающем комплексе. Как показал Гедройц, ПК, насыщенный натрием, диспергируется в воде, в связи с чем солонцы легко набухают, образуя во влажную погоду липкую бесструктурную массу, а в сухую — исключительно твердые столбы и глыбы. Так изящно и просто удалось объяснить характерные физические свойства солонцов, играющие весьма отрицательную роль в сельском хозяйстве и дорожном строительстве (грунтовые дороги на солонцах в дождливую погоду почти непроходимы).

Биокосные системы Земли i_006.jpg

Рис. 2. Схема распределения солончаков и солонцов в долинах степных рек.

1 — засоление почв — образование солончаков, вхождение натрия в поглощающий комплекс; 2 — рассоление почв — образование солонцов, вымывание солей из верхних горизонтов почв, формирование рассоленного солонцового горизонта В, поглощающий комплекс которого содержит много обменного натрия; 3 — верхняя граница засоленного горизонта; 4 — былой уровень залегания грунтовых вод (в пойменную стадию)

Простое объяснение с этих позиций получило и строение профиля солонцов, где под солонцовым горизонтом В1, содержащим обменный натрий, залегает солевой горизонт В2, в который при рассолении вмываются соли из верхней части почвы.

Замечательным результатом применения повой теории явилось объяснение важной закономерности размещения солонцов — их приуроченности ко вторым и третьим террасам рек, на поймах которых развиты солончаки. При врезании рек и превращении пойм в террасы почвы отрываются от грунтовых вод и засоление сменяется рассолением (в результате промывания почв атмосферными осадками). Поэтому одновременно с превращением поймы в террасу солончак превращается в солонец (рис. 2).

Дальнейшие исследования показали, что солонцы могут образоваться не только в результате рассоления солончаков, но и другим путем. Однако основные положения теории Гедройца выдержали проверку временем и вошли в фундаментальные основы почвоведения.

Учение Гедройца о поглощающем комплексе имело большое значение и для развития других наук о Земле, так как коллоидная фракция и обменные катионы характерны для всех глин и илов. Например, дорожные и строительные свойства грунтов тесно связаны с их обменными катионами, в связи с чем в трудах по грунтоведению учению Гедройца уделяется видное место. Было установлено, например, что грунты, ПК которых насыщен натрием, обладают ничтожной фильтрацией. Чтобы уменьшить фильтрацию, борьба с которой составляет одну из важных задач мелиораторов, украинский почвовед А. Н. Соколовский предложил искусственно насыщать катионом натрия ПК ложа каналов и водохранилищ.

В 1925 г. Гедройц разработал классификацию почв, среди которых по составу обменных катионов выделил четыре основных типа почвообразования:

1) латеритный (в ПК преобладает обменный водород, обменных Са и Mg мало);

2) подзолистый (в ПК наряду с обменным водородом имеются Са и Mg);

3) черноземный (ПК насыщен Са и Mg);

4) солонцовый тип (ПК содержит обменный натрий, но есть Са и Mg).

Эта работа произвела сильное впечатление на современников тем, что в основу классификации автор положил внутренние свойства почв, а не факторы почвообразования, как это нередко имело место в прежних работах. В той или иной степени идеи Гедройца нашли отражение во всех последующих классификациях почв как в нашей стране, так и за рубежом. Особенно большое значение им придавал известный венгерский почвовед А. Зигмонд (1873—1939).

Гедройц официально не причислял себя к геохимикам. Однако ученый сделал объектом своего исследования химический элемент; он изучал его историю в почвах, его миграцию и вслед за своим учителем Коссовичем применил в исследовании геохимическую методологию. Поэтому Гедройца можно считать не только основателем химии, но и основателем геохимии почв, изучающей историю химических элементов в почве. Это направление получило широкое распространение уже после смерти Гедройца в трудах Б. Б. Полынова, В. А. Ковды, М. А. Глазовской, Г. В. Добровольского, К. И. Лукашева и других почвоведов.

Б. Б. Полынов определил интенсивность миграции химических элементов в почвах, изучал поведение элементов в процессах засоления, создал теорию биогенного генезиса глинистых минералов в почвах. Эти его труды послужили основой для разработки геохимии коры выветривания и ландшафтов, о чем мы еще будем говорить в других разделах книги.

Развивая идеи Гедройца и Полынова, В. А. Ковда охарактеризовал геохимию процессов засоления и рассоления, использовал геохимические принципы при классификации почв мира. Ученый разработал эволюционногенетическую систему классификации почв мира, самой крупной таксономической единицей которой являются почвенно-геохимические формации (формации кислых аллитных почв, нейтральных и слабощелочных монтмориллонитовых почв, кислых каолинитовых почв и т. д.). Геохимическим параметрам в этих построениях отводится почетное место.

Наиболее глубокое обоснование геохимические принципы классификации почв получили в трудах М. А. Глазовской. По сочетанию двух признаков — щелочно-кислотных и окислительно-восстановительных условий — она выделила 11 геохимических ассоциаций почв, которые, в свою очередь, разделяются на генерации и семейства. Большое значение классификации Глазовской состоит в использовании геохимических параметров, играющих действительно ведущую роль в жизни почв. Обменные катионы в классификации Глазовской также учитываются, но таксономический ранг этого признака более скромный, соответствующий его роли в почвообразовании.

Другое направление геохимии почв — изучение поведения отдельных элементов в почвах, в первую очередь микроэлементов. Начало этому направлению было положено в 1913 г. статьей В. И. Вернадского о химическом составе почв, в которой ученый ставил вопрос о необходимости определения в почвах рубидия и газов. В дальнейшем Вернадский не раз обращался к вопросу об анализе почв с геохимической точки зрения. В 1950 г. ученик Вернадского акад. А. П. Виноградов (1895—1975) опубликовал монографию, в которой охарактеризовал содержание в почвах бора, фтора, брома, йода, мышьяка, селена, лития, рубидия, хрома, цезия и других микроэлементов. В последнее десятилетие число исследований по микроэлементам в почвах растет очень быстро.

Химические элементы находятся в почвах в различных формах: в виде свободных ионов в растворе, в поглощенном и рассеянном состоянии, входят в органическое вещество и неорганические соединения — минералы. Содержание последних особенно велико и часто составляет 95—99% веса почвы. Поэтому так важно минералогогеохимическое изучение почв.

Почва как биокосная система

Биологические явления в почвах всегда привлекали внимание исследователей: развивалась почвенная микробиология, изучались почвенная флора и фауна (например, черви, грызуны). Однако первые десятилетия развития докучаевского почвоведения были отмечены, как мы убедились, преимущественно вниманием к проблемам географии и химии почв. Несколько особняком в эти годы стоял Б. Р. Вильямс (1863—1939), который главное внимание уделял именно биологическим аспектам почвообразования; применял он и системный подход. Для творчества Вильямса были характерны крупные обобщения; ученый полагал, что сущность почвообразования заключается в создании и разрушении органического вещества.