Изменить стиль страницы

В красноцветах глеевые подземные воды изменили красную окраску пород на зеленую, сизую, серую, в связи с чем былую деятельность подземных вод легко диагностировать непосредственно в поле — у обнажения, рассматривая керн буровой скважины.

Впервые с этими явлениями я познакомился в 1938 г. в хребте Кунгей-Алатау в Северной Киргизии. Многое тогда казалось загадочным, и в частности происхождение зеленых полос среди красных глин и песчаников. Позднее в пустынных районах Гоби (Монгольская Народная Республика) и особенно в Средней Азии на пути маршрутов постоянно встречались красные горы и обрывы, чередование красных и зеленых полос в разрезе. Мысль невольно возвращалась к загадке их происхождения.

Однажды при наблюдении красноцветов у меня возникло предположение, что зеленые полосы на красном фоне — это следы процессов оглеения, которое могло быть вызвано подземными водами. Сопоставляя наблюдения (пригодились и воспоминания о монгольских обнажениях Гоби), я убедился в исключительно широком развитии оглеения в красноцветной формации, в большом геохимическом значении данного процесса.

В красноцветах, мощность которых достигает сотен и даже тысяч метров, многократно переслаиваются песчаники и алевролиты, реже среди них встречаются прослои галечников, гравелитов, глин и известняков. Напомним, что в красный цвет эти породы окрашены окислами и гидроокислами железа, облекающими в виде тонкой пленки пылеватые, песчаные и глинистые частицы.

Полосы и зоны пятнистой красно-зеленой или однородной синевато-зеленой, светло-серой или белесой окраски обычно представляют собой песчаники, гравелиты, конгломераты. Мощность таких полос колеблется от нескольких десятков сантиметров до нескольких метров. Края их неровные: как правило, такие горизонты через пятнистую сизо-красную зону переходят в преобладающие красные породы.

Ранее некоторые ученые полагали, что при осадкообразовании в условиях восстановительной среды откладывались зеленоватые (серые, сизые) пески, а в условиях окислительной — красные алевролиты. Нетрудно убедиться, что при осадкообразовании возникли бы обратные соотношения — пески, откладывающиеся из быстротекущих и, следовательно, богатых кислородом вод, имели бы красно-бурую окраску, а алевролиты и глины, осаждающиеся в более застойных условиях, — зеленоватую, сизую и т. д. Однако это противоречие не привлекало должного внимания.

Изучая сизые, зеленоватые и белесые горизонты и слои красноцветов, я пришел к выводу, что они представляют собой былые водоносные горизонты, окраска которых изначально была красной. Подземные воды, естественно, двигались по более проницаемым горизонтам — пескам и гравелитам, а также по трещиноватым известнякам. Если воды залегали глубоко, то они могли не содержать свободного кислорода и восстанавливать соединения железа, т. е. переводить Fe3+ в Fe2+. В результате соединения Fe3+ восстанавливались и переходили в раствор, мигрируя вместе с подземными водами. Частицы пород, лишаясь «железистой рубашки», приобретали светло-серую, белую, сизую или зеленоватую окраску. Иногда железо только переходило из одной формы в другую, не мигрируя. При этом красная окраска заменялась зеленой.

Глины и алевролиты, примыкающие к водоносному горизонту вследствие капиллярного впитывания, также содержали воду, и в них развивались восстановительные процессы. В результате и эти слои приобретали сизозеленую или пятнистую окраску, которая распространялась на десятки сантиметров от контакта глины с песками.

Геохимическая деятельность подземных вод местами была столь интенсивной, а число водоносных горизонтов столь велико, что породы красноцветной формации чрезвычайно сильно изменились: почти все «пленочное» железо было перераспределено. Лишь средние части алевролитовых и глинистых горизонтов сохранили свою первоначальную окраску, местами она проявлена только в форме пятен. Породы в таких районах приобрели пеструю окраску, создающую впечатление хаоса красных, белых, охристо-ржавых полос и пятен. И только внимательное рассмотрение позволяет установить строгую закономерность в распределении окраски: чередование в разрезе былых водоносных и водоупорных горизонтов. Подобные породы нередко именуются пестроцветными. Следовательно, некоторые пестроцветы образовались из красноцветов в результате их переработки подземными водами (рис. 20).

Оглеение пермских красноцветов установлено автором и Е. Н. Борисенко во многих районах Приуралья и Заволжья: в Татарской, Удмуртской и Башкирской АССР, Пермской и Оренбургской областях. Широко распространены эти явления в меловых и палеогеновых красноцветах Средней Азии. Это преимущественно карбонатное, но местами также содовое оглеение. Возможны и другие классы. Е. Н. Борисенко доказала, что при карбонатном оглеении красноцветов мигрируют медь, свинец и другие рудные элементы.

Оглеение под воздействием подземных вод было широко распространено в прошлые геологические эпохи, многочисленные его следы обнаружены и в других формациях — меловых песках Подмосковья (Клинско-Дмитровская гряда и др.), Средне-Русской возвышенности (район Курской магнитной аномалии), Окско-Донской низменности и т. д. Сильно оглеены плиоценовые и миоценовые пески Молдавии, олигоценовые пески Приташкентского района, породы юрской угленосной формации Средней Азии и Забайкалья.

Биокосные системы Земли i_031.jpg

Рис. 20. Оглеенные красноцветы.

I — красноцветные алевролиты; II — оглеенные алевролиты (зеленые, изначально красные); III — оглеенные песчаники (серые, зеленые, изначально красные)

Глеевые водоносные горизонты характерны также для участков нефтяных и газовых залежей (в водах много органических веществ — пищи для микробов, работающих энергично). Особо благоприятные условия для деятельности микробов создаются на водонефтяных контактах, где микроорганизмы, окисляя органическое вещество нефти, продуцируют CO2, органические кислоты[9]. В результате на контакте pH вод понижается и карбонаты водовмещающих пород растворяются по известной схеме (кислый глеевый класс):

Биокосные системы Земли i_032.jpg

Гидрокарбонатные растворы, содержащие повышенное количество Са2+, Mg2+, Fe2+, Mn2+, мигрируют в сторону от водонефтяного контакта, где в водоносных горизонтах микробиологическая деятельность развивается слабее и pH выше. В результате происходит осаждение вторичных эпигенетических карбонатов, цементирующих пласт. Эти явления были описаны на нефтяных месторождениях Среднего Поволжья, Кубани, Средней Азии.

Новые интересные данные доставило изучение нефтегазоносных бассейнов Сибири. Б. А. Лебедев, А. А. Розин, З. Я. Сердюк и др. установили широкое распространение в Западной Сибири эпигенетической каолинизации и карбонатизации. Так, в Межовском районе в юрских отложениях на глубине 2500 м полевые шпаты, слюды, хлориты превращены в каолинит. Здесь же развиваются и вторичные карбонаты. Эпигенетические изменения носят «игольчатый» характер, часто они приурочены к зонам разломов. Аналогичные явления установлены в районе Шаима, Сургута, Чебачья, Мельджино. Изменения происходили в восстановительных условиях, так как среди вторичных карбонатов присутствует не только кальцит, но и сидерит, анкерит. Следовательно, железо мигрировало и среда была глеевой. Каолинизация возможна только в кислой среде, а осаждение карбонатов — в нейтральной и щелочной. Это однозначно решает вопрос о последовательности процессов — сперва кислая глеевая каолинизация, потом окарбоначивание каолинизированных горизонтов.

Р. В. Королева и Б. А. Лебедев описали подобную кислотно-щелочную зональность в триасовых песчаниках Лено-Вилюйской нефтеносной области. Так, на Средне-Вилюйском газовом месторождении в водоносных горизонтах на глубине 2,5—3,5 км в песчаниках наблюдается следующая эпигенетическая зональность:

вернуться

9

Местами образуется H2S, и водоносные горизонты относятся к третьему — сульфидному ряду.