Изменить стиль страницы

Для выпрямителей сетевых блоков питания лучше всего подходят применяемые в телевизорах выходные трансформаторы кадровой развертки типов ТВК-70, ТВК-110ЛМ-К, ТВК-110-Л и некоторые другие (см. приложение 10). В зависимости от используемого ТВК от блока питания можно получить выпрямленное напряжение от 8-10 до 25–30, В при потребляемом токе до 0,8–1 А. Радиолюбители часто используют в сетевых блоках питания трансформаторы ТВК. Их применяют и в некоторых конструкциях, которые я буду тебе рекомендовать.

Но сетевой трансформатор выпрямителя может быть также самодельным, если использовать для него подходящий магнитопровод от какого-то другого трансформатора. Мощность такого трансформатора не должна быть меньше мощности тока, потребляемого нагрузкой выпрямителя. Поясню это на конкретном примере выбора магнитопровода. Предположим, напряжение питания конструируемого тобой усилителя 3Ч должно быть 12 В при токе 300 мА (0,3 А). Значит, мощность тока, потребляемая усилителем от выпрямителя будет: Р = UнIн = 12·0,3 = 3,6 В. С учетом некоторых потерь, неизбежных при трансформации переменного тока и его выпрямлении, мощность, сетевого трансформатора блока питания должна быть не менее 5 Вт. Площадь сечения сердечника магнитопровода, соответствующую необходимой мощности трансформатора, можно определить по упрощенной формуле: S = 1,3·√Ртр, где 1,3 — усредненный коэффициент, Ртр — мощность трансформатора. Следовательно, для нашего примера площадь сечения магнитопровода трансформатора должна быть не менее: S = 1,3·√Ртр = 1,3·√5 ~= 3 см2. Площадь сечения подобранного магнитопровода будет исходным параметром для расчета числа витков первичной и вторичной обмоток сетевого трансформатора выпрямителя.

Опыт радиолюбительской практики показывает, что наиболее подходящими являются магнитопроводы выходных трансформаторов ламповых радиовещательных приемников и каналов звука телевизоров. Площадь сечения многих из них составляет 4–5 см2 и любой из них можно использовать для изготовления сетевого трансформатора блока питания. Предпочтение же следует отдать магнитопроводу большего сечения, так как в этом случае меньше витков будет в обмотках, а излишняя мощность трансформатора делу не повредит.

Расчет обмоток будущего сетевого трансформатора веди в таком порядке. Сначала определи площадь сечения подобранного магнитопровода. Для этого толщину пакета (в сантиметрах) умножь на ширину среднего язычка пластин. Затем подсчитай число витков, которое должно приходиться на 1 В напряжения при данном сечении магнитопровода, по такой упрощенной формуле: w = 50/S, где w — число витков; S — площадь сечения магнитопровода; 50 — постоянный коэффициент. Получившееся число витков w умножь на напряжения в вольтах, которые подводятся к первичной обмотке и должна давать вторичная обмотка. Произведения этих величин укажут числа витков в каждой обмотке.

Допустим, ты имеешь магнитопровод из пластин Ш-20, толщина набора 25 мм. Значит, площадь сечения магнитопровода равна 2х2,5 = 5 см2. Напряжение сети 220 В (по рис. 166 — UI), вторичная обмотка должна давать переменное напряжение UII, равное, например, 10 В. Узнаем число витков, которое для данного магнитопровода должно приходиться на 1 В напряжения: w = 50/S = 5 витков.

Теперь нетрудно определить числа витков в каждой обмотке: в первичной, рассчитанной на напряжение сети 220 В, должно быть 5х220 = 1100, во вторичной 5х10 = 50 витков. Если же трансформатор должен включаться в сеть с более низким напряжением, чем 220 В, например в сеть напряжением 127 В, нужно пересчитать только число витков первичной обмотки. Для первичной обмотки можно использовать провод ПЭВ-1 0,12-0,15, для вторичной — ПЭВ-1 0,55-0,62. На каркас наматывай сначала первичную обмотку, а затем вторичную.

Провода обмоток укладывай плотными рядами, виток к витку. Между рядами делай прокладки из тонкой бумаги в один-два слоя, а между обмотками — в три-четыре слоя такой же бумаги или в два-три слоя более толстой. Выводы обмоток пропускай через отверстия в щечках каркаса и сразу же делай на нем соответствующие пометки.

Обмотки трансформатора удобно наматывать с помощью простейшего приспособления, показанного на рис. 167.

Юный радиолюбитель (7-изд.) _181.jpg

Рис. 167. Приспособление для намотки трансформатора

Осью бруска, который плотно входит в окно каркаса трансформатора, служит металлический пруток толщиной 6–8 мм, изогнутый с одной стороны наподобие ручки. Пруток удерживается в отверстиях дощатых стоек. Одной рукой вращаешь ось, а другой укладываешь провод на каркасе. Намотку можно делать и вручную, используя удлиненный брусок с ручкой, которую можно держать в руке. Особое внимание обращай на равномерность и плотность укладки провода и на изоляцию между радами и обмотками. При невыполнении первого условия требуемое число витков в обмотках может не уместиться на каркасе. А если не будет надежной изоляции между рядами и обмотками, то при включении трансформатора в сеть обмотки могут пробиться — произойдет замыкание между обмотками или витками и трансформатор придется делать заново.

Пластины магнитопровода собирай «в перекрышку» (рис. 168) до полного заполнения окна каркаса и стягивай магнитопровод обоймой (или шпильками с гайками, предварительно обернув шпильки бумагой, чтобы через них пластины не замыкались). Плохо стянутый магнитопровод может гудеть.

Юный радиолюбитель (7-изд.) _182.jpg

Рис. 168. Сборка магнитопровода трансформатора

А теперь…

СЕТЕВОЙ БЛОК ПИТАНИЯ

В этой части беседы я расскажу тебе о законченном блоке питания транзисторной аппаратуры от сети переменного тока. Конструируемые приемники или усилители ты можешь изменять, упрощать или усложнять, но для их питания будешь использовать один и тот же блок питания.

Предлагаемый блок питания (рис. 169) представляет собой двухполупериодный выпрямитель со стабилизатором и регулятором выпрямленного напряжения. Напряжение постоянного тока на его выходе можно плавно изменять примерно от 1 до 12 В при токе до 0,5 А. Это значит, что такой блок можно использовать для питания практически любого транзисторного приемника или усилителя 3Ч, измерительных приборов.

Юный радиолюбитель (7-изд.) _183.jpg

Рис. 169. Принципиальная схема блока питания транзисторных конструкций

Разберемся в устройстве и работе блока. Сетевой трансформатор Т1 обмоткой I подключают к электроосветительной сети напряжением 220 В через плавкий предохранитель F1 и выключатель S1. Обмотка II трансформатора и диоды V1-V4, включенные по мостовой схеме, образуют двухполупериодный выпрямитель. Эта часть блока питания тебе уже знакома по предыдущей части беседы (см. рис. 166).

К выпрямительному мосту подключен электролитический конденсатор С1, частично сглаживающий пульсации выпрямленного напряжения. С него выпрямленное напряжение подается к нагрузке Rн через стабилизатор напряжения, выполняющий функцию дополнительного фильтра выпрямителя и одновременно регулятора выходного напряжения блока питания.

Проследи цепь питания нагрузки Rн (приемник, усилитель), подключаемый к зажимам X1 «-» и Х2 «+» блока. Ток в этой цепи, а значит, и напряжение на нагрузке зависят от состояния транзистора V7, включенного в эту цепь. Когда этот транзистор открыт и сопротивление его участка эмиттер-коллектор мало (несколько ом), все напряжение выпрямителя падает на нагрузке Rн. Когда же транзистор закрыт и сопротивление участка эмиттер-коллектор становится очень большим, то почти все напряжение выпрямителя падает на этом участке, а на долю нагрузки практически ничего не остается. Состоянием же транзистора V7 управляет транзистор V6, который в свою очередь управляется напряжением, подаваемым на его базу с движка переменного резистора R2. Оба транзистора включены по схеме ОК (эмиттерные повторители) и работают как двухкаскадный усилитель тока. Нагрузкой транзистора V6 являются эмиттерный р-n переход транзистора V7 и резистор R3, а нагрузкой регулирующего транзистора V7 — цепи приемника или усилителя, подключенные к выходу блока.