Изменить стиль страницы

Опытная установка на Дрогобычском комбинате работает. Дело — за широким промышленным внедрением принципиально нового метода.

Сбудутся ли предсказания Рамзая?

Более двадцати лет назад в одном из домов на Красноказарменной улице, неподалеку от Московского энергетического института, вокруг светящейся гирляндами огней новогодней елки собралась группа восторженных сотрудников лаборатории высоких температур Академии наук СССР. Они ликовали, потому что ток для гирлянд давала первая в стране лабораторная магнитогидродинамическая установка.

Сейчас лаборатория стала крупнейшим институтом Академии наук СССР. Он переехал ближе к Московской окружной автодороге. Там, на Коровинском шоссе, рядом с ТЭЦ построена опытно-промышленная установка У-25, мощность которой достаточна для освещения сотен тысяч новогодних елок, энергоснабжения небольшого города. А неподалеку от Рязани строится первая промышленная магнитогидродинамическая электростанция (МГДЭС) мощностью 250 тысяч киловатт.

На электростанциях преобразование тепловой энергии в электрическую осуществляется в паровой или газовой турбине. Повышается температура пара или газа — растет ее КПД. При температуре 2000 °C можно было бы достичь КПД около 70 процентов, но никакая турбина не выдержит такого перегрева. Сегодняшняя техника в состоянии создать газовые турбины для температур 1000–1300 °C, но у них будет ограниченный ресурс работы и мощности. А вот при бестурбинном прямом способе преобразования мы имеем дело с температурами до 2200–3000 °C.

Такой нагрев приводит к ионизации продуктов сгорания. Газовый поток превращается фактически в проводник, носитель электрического тока. Если поместить его в канал с электродами и создать магнитное поле, то между электродами возникает электродвижущая сила. Достаточно теперь замкнуть внешнюю цепь между электродами, подключить нагрузку, и электрогенератор заработал.

При этом создается электромагнитная сила, направленная против движения газа. Поток низкотемпературной плазмы, разогнанный в сопле до скорости около 1000 метров в секунду, тормозится и охлаждается до температуры 1500–1700 °C. Другими словами, кинетическая энергия ионизированного газа преобразуется в энергию электрического тока. Газовая струя, выходящая из камеры, еще сохраняет более половины первоначальной энергии.

Она далее используется как в обычной теплоэлектростанции. Так, на Рязанской МГДЭС сам МГД-генератор сочленен с обычной ТЭС. В таком комплексе можно добиться повышения КПД до 50–55 процентов.

Каждый процент прироста такой КПД дается недешево. Нужны инверторы для преобразования постоянного тока в переменный, сверхпроводящие магнитные системы. В камере сгорания — высокая температура, которую не выдерживают даже электроды из тугоплавких металлов. К тому же агрессивная плазма разъедает их.

Следовательно, нужны керамические электроды, обладающие при высокой температуре достаточной проводимостью. Кроме того, из-за ряда электрофизических эффектов на камере сгорания наводится электропотенциал до нескольких тысяч вольт, так что приходится применять высоковольтные электроизоляционные вставки на всех ведущих к ней трубопроводах и в точках ее соприкосновения с фундаментом. На опытно-промышленной Рязанской МГДЭС как раз и предстоит проверить методы преодоления подобных сложностей.

Интенсивная разработка МГД-генератора велась в те годы, когда уже обозначилось подорожание газожидкостного топлива, необходимость его экономии. Сейчас ясно, что на МГДЭС будет использоваться не нефть, а только, возможно, в небольшой степени, газ, в основном же уголь. Однако в местах добычи твердого топлива вряд ли целесообразно пристраивать к ТЭС дорогостоящие МГД-установки, чтобы экономить дешевый уголь. Но на МГДЭС, считают исследователи Института высоких температур АН СССР (ИВТАН), можно организовать эффективную систему очистки дымовых газов от двуокиси серы.

Предположим, в плазму добавляют ионизирующиеся соединения щелочных металлов — например карбонат калия. Тогда, во-первых, повышается ее удельная проводимость, а во-вторых, в интервале температур от 1600 °C до 1200–1300 °C образуется соединение калия и серы — сульфат калия. Получившийся сульфат калия конденсируется по мере охлаждения газового потока, а при температуре 1100 °C он затвердевает.

Сульфат калия улавливается электрофильтрами, а затем в специальной шахтной печи восстанавливается водородом или метаном до сероводорода. Товарная сера получается из сероводорода при окислении, хотя выгоднее использовать и знакомый нам плазмохимический процесс. Согласно экспериментальным данным из дымовых газов удаляется в результате до 99,8 процента серы.

Можно ли применить столь эффективный метод очистки на обычной ТЭС? Здесь важно, как и на МГДЭС, уменьшение потери калия, иначе очистка окажется дорогой. Ученые ИВТАНа продолжают исследования.

В Петрограде в самый разгар гражданской войны была издана книга английского химика У. Рамзая «Элементы и энергия». Наша страна испытывала тогда топливный голод, и мысли ученого о новых источниках энергии и об ее экономии звучали весьма своевременно.

Автор убедительно показывал важность энергии в жизни общества. Когда человек ею обеспечен, он может посвятить свое время искусству, развлечениям, образованию. «Каким путем, например, Афинская республика достигла таких успехов литературы и философской мысли?» — спрашивает У. Рамзай. Ответ гласит: «У каждого свободного грека было в среднем по крайней мере пять рабов, исполнявших его приказания, разрабатывавших рудники, возделывавших его поля и вообще избавлявших его от физического труда».

Учитывая конечность запасов ископаемого топлива, английский ученый указывал также на необходимость бережно относиться к расходованию энергоносителей «Мы должны, — говорил он, — рассчитывать главным образом на наши запасы угля как на источник энергии и на средство к обеспечению существования нашего населения; и мы должны стремиться к возможно более экономному расходованию угля… Хотя действительная потеря тепловой энергии в форме дыма невелика — не более полупроцента всего потребленного топлива, однако дым является видимым знаком напрасной растраты топлива и небрежного отопления… Мы совершенно избавимся от дыма введением штрафа в 6 пенсов за каждое нарушение соответствующего постановления».

И далее У. Рамзай предсказывал, что «изобретение, которое позволило бы нам превращать энергию угля непосредственно в электрическую энергию, произвело бы переворот во всех наших понятиях и методах, а такое изобретение теперь уже не представляется немыслимым».

Основания для подобных надежд породило открытие английского электрохимика Уильяма Грова. Когда он в 1839 году погрузил в банку с серной кислотой два платиновых электрода и один из них стал обдувать водородом, а другой — кислородом, то между электродами, как показала отклонившаяся стрелка гальванометра, стал течь электрический ток. Значит, в этом топливном элементе, а теперь электрохимическом генераторе (ЭХГ) при соединении водорода и кислорода энергия связи атомов превращается непосредственно в электрическую энергию.

Открытие не оценили тогда по достоинству, потому что примерно такие же электрохимические батареи, какие мы используем и сейчас, существовали и в те времена и в них тоже получали электрический ток. Источником энергии в батареях является окисление ценных металлов: никеля, свинца, цинка. Но для производства этих чистых металлов тратится энергии гораздо больше, чем затем удается высвободить в виде электроэнергии. С энергетической точки зрения процесс оказывается невыгодным.

Над проблемой экономии энергии тогда особенно не задумывались. Да и величина мощности топливного элемента была ничтожной. В итоге опыт У. Грова не произвел впечатления.

Однако к концу XIX века отношение к топливным элементам изменилось. По словам ученого Вильгельма Освальда, «если мы будем иметь элемент, производящий электроэнергию прямо из угля и кислорода воздуха, то это будет техническим переворотом, превосходящим по своему значению изобретение паровой машины».