Изменить стиль страницы

Итак, в очередной раз в камере с дейтерием производится электрический разряд, и приборы регистрируют нейтронный импульс!

Неужели все так просто? Обычный газовый разряд — и термоядерная реакция синтеза в наших руках!

Физикам, воодушевленным этой удачей, казалось, что они на пороге овладения термоядерной реакцией. Да и действительно трудно не воодушевиться в такой ситуации. «Вперед, к еще более мощным приборам и установкам», — стали дружно призывать физики-оптимисты.

«Не слишком ли просто и легко дается решение такой сложной проблемы? Нет ли здесь незамеченной ошибки?» — осторожно возражали более осмотрительные их коллеги. Постепенно разгорались дебаты. Попробуем вникнуть в их суть. Но условимся не считать тех и других хорошими или плохими. Дело в том, что в науке возникает так много тупиковых проблем и идей и так много исследований дают отрицательные результаты, что сказать сразу, что лучше — оптимизм или пессимизм, почти невозможно. А теперь послушаем, о чем же идет разговор.

П. (пессимист). У меня нет никакой уверенности, что эти нейтроны возникли действительно в результате термоядерной реакции.

О. (оптимист). Почему?

П. Потому что нейтроны могут образоваться и в результате какого-либо другого процесса.

О. Какого именно?

П. Сами ионы дейтерия могли быть ускорены под действием приложенной разницы потенциалов и соударяться с ионами дейтерия, прилипшими к стенкам камеры или к электродам. Тогда нейтроны не результат термоядерной реакции, то есть общего разогрева плазмы, а следствие процесса ускорения.

О. Да, но тогда источники нейтронов располагались бы вблизи электродов, как это бывает в обычном процессе ускорения, а не оказались бы равномерно распределенными по всему объему.

П. Это правильно, но давайте еще раз проверим на опыте.

Ставился очередной опыт, и он снова показывал, что источники нейтронов распределены по всему объему плазмы и часто вылетают из ее центра. Но пессимист не успокаивался.

П. Но ведь количество нейтронов, наблюдаемое нами, чересчур велико для тех температур, которые возникают в таком разряде!

О. Так это просто замечательно! Значит, будет проще осуществить термоядерный реактор!

П. А как быть с теорией, устанавливающей строгую зависимость образования нейтронов от температуры плазмы?

О. Теорию придется подправить. Ведь мы обнаружили, что ускорительного процесса нет!

Под «давлением» пессимистов вновь один за другим ставились опыты. Оказалось, что победили сомнения пессимиста. Нейтроны возникали действительно в результате ускорительного процесса, но не совсем обычного.

Чем же было вызвано появление большого количества нейтронов при сравнительно низких температурах плазмы?

Обнаружилось, что плазменный шнур во время разряда подвержен целому ряду различных неустойчивостей. К примеру, он как будто внезапно перетягивался поперек сечения, являя собой очень тонкую нить. В момент появления такой перетяжки именно здесь возникал огромный осевой электрический потенциал, во много раз превышавший напряжение, приложенное к электродам цилиндра. Под действием этого потенциала и происходило ускорение отдельных ионов дейтерия и рождение нейтронов, которые, конечно же, не были термоядерными. Впоследствии их назвали нейтронами неустойчивости, или ложными.

Так, или приблизительно так, были сделаны первые шаги в освоении УТС на установках Института атомной энергии, где в 1952 году были зарегистрированы эти первые лженейтроны.

В тот же период подобные опыты по самосжатому разряду проводились в Англии.

В США для экспериментов в Лос-Аламосской лаборатории У. Так создал камеру в виде бублика-тора, заполненного газом. При разряде конденсаторной батареи через катушку, надетую на этот тор, внутри его индуцировался ток в десятки тысяч ампер.

Один из скептиков, услышавший, каких результатов хотят добиться с помощью этого устройства, назвал его в шутку «импоссиблитроном» (Impossiblytron), то есть невозможнотроном. Тогда У. Так, отвечая ему и желая отразить свой оптимизм в названии, нарек первую экспериментальную модель «перхэпсатроном» (Perhapsatron), то есть возможнотроном. С таким названием эта установка и вошла в историю борьбы за управляемый термоядерный синтез.

Так первые идеи, первые эксперименты, первые радости и разочарования породили первые неожиданности.

Главной была неустойчивость — этот бич плазмы. Первая атака на нее оказалась неудачной. Но, как разведка боем, она вскрыла много уязвимых мест плазмы, прояснила много ранее туманных вопросов, стала трамплином для дальнейшего развития теории…

Как видите, всего несколько страничек заняло описание экспериментов по самосжатому разряду. На чтение этих живых воспоминаний читатель потратил минуты.

В жизни на это ушли годы раздумий теоретиков, дни и ночи работы экспериментаторов, инженеров, техников, рабочих. Академик Л. Арцимович, руководивший тогда исследованиями УТС, и его сотрудники за эти работы были удостоены Ленинской премии.

Начался новый этап борьбы за управляемый термоядерный синтез.

МЕДЛЕННО? НЕТ, БЫСТРО!

Самое прекрасное, что мы можем испытать, — эта ощущение тайны.

Она есть источник всякого подлинного искусства и всей науки.

Альберт Эйнштейн

Взорвав водородную бомбу, человек осуществил термоядерный синтез. Оставалось выполнять главную задачу в термоядерной проблеме — научиться управлять этим процессом, контролировать скорость термоядерного взрыва.

Чтобы взять его под контроль, можно идти двумя путями. С одним мы уже познакомились. Его идея — замедлить течение реакции, растянуть ее во времени.

По этому принципу и создаются устройства с магнитным удержанием плазмы. Такова наша установка Токамак. По замыслу его создателей в термоядерный реактор загружается топливо. С помощью внешних источников энергии оно разогревается и горит несколько минут, чтобы уступить место следующей порции топлива.

На протяжении всего времени горения плазма удерживается с помощью магнитных полей.

Но возможен и другой способ управления этим процессом. Суть его в том, что в реакторе осуществляются термоядерные взрывы гораздо меньшей мощности, нежели в водородной бомбе. В сущности, это микровзрывы. Важно, чтобы устройство, в котором они имеют место, во-первых, выдерживало эти микровзрывы, а во-вторых, «успевало» переводить их энергию в полезную энергию. Отсюда задача — найти способ мгновенного разогрева топлива до термоядерной температуры, и тогда оно взорвется. Затем, непрерывно осуществляя эти микровзрывы, переводить выделяющуюся энергию в удобные для нас формы.

Спрессованный свет

Для управления термоядерным процессом советские физики Н. Басов и О. Крохин в 1964 году предложили для разогрева плазмы использовать лазер.

Чтобы разобраться в сути их предложения, придется сначала ознакомиться с тем, как работает и какими свойствами обладает устройство, названное лазером.

Интересно, что о его прообразе писатели-фантасты заговорили несколько десятков лет назад. Вспомним хотя бы роман А. Толстого «Гиперболоид инженера Гарина».

Не предвидя, конечно, создания известного современному человечеству удивительного прибора, имеющего совершенно иное назначение, автор романа писал: «Первый удар луча гиперболоида пришелся по заводской трубе — она заколебалась, надломилась посередине и упала… Был виден завод, раскинувшийся на много километров. Половина зданий его пылала, как карточные домики. Луч бешено плясал среди этого разрушения».

Лазер называют еще квантовым генератором света.

Родился он в конце 50-х годов нашего века. Главная роль в создании этого источника светового излучения принадлежит советским ученым — Н. Басову, А. Прохорову и американцу Таунсу.