Изменить стиль страницы

Таким образом Эдисону удалось записать речь в виде царапин на поверхности цилиндра. Для ее воспроизведения достаточно было поместить такую же иглу в начале борозды. При вращении цилиндра игла начинает скользить вдоль борозды, все время подпрыгивая, и заставляет пластинку, к которой она прикреплена, колебаться. А колеблющаяся пластинка прекрасно воспроизводила записанную ранее речь.

Этот прибор был назван фонографом. Его вскоре усовершенствовали. Оловянную поверхность цилиндра заменили восковой, что значительно удешевило прибор.

Фонограф Эдисона по сути дела был усовершенствованием такого же устройства для записи звука, изобретенного в 1859 году англичанином Скоттом.

Прибор Скотта назывался фонавтографом. В нем звук записывался на закопченную бумагу иглой, соединенной с пластинкой — мембраной.

Вся беда фоноавтографа была в том, что воспроизвести записанный звук было совершенно невозможно. Запись по сути дела пропадала. Но вскоре прибор был усовершенствован, и вращающийся цилиндр заменен пластинкой, на которую заранее были нанесены борозды одинаковой глубины. Эти борозды образовали сворачивающуюся спираль.

На приготовленной таким образом восковой пластинке производилась запись резцом. Но колебания резца происходили не по глубине, а поперек борозды. Этот прибор изобрел в 1894 году немецкий физик Берлинер. Он был назван граммофоном.

Граммофон имел огромное преимущество перед фонографом Эдисона, так как была открыта возможность копировать звук, записанный на диск.

Звук за работой i_069.jpg

Первый граммофон

В настоящее время запись делают на дисках из мягкого материала. Затем пластинка копируется на металл, а после этого делаются ее оттиски. Таким образом можно получить много экземпляров одной и той же записи звуков и разослать «живые письма» во все части света.

Такое письмо и подарил Эдисон Льву Николаевичу Толстому. Звук по почте был перевезен через океан в Россию. Вместе с «письмом» Толстой получил фонограф и запас восковых валиков для записи звуков. Льву Николаевичу подарок очень понравился. На одном из валиков были записаны его слова, обращенные к ученикам-школьникам.

И теперь в музее имени великого писателя можно услышать его живую речь.

Заря звукового кино

«Великий немой» — немое кино — не долго удовлетворял людей. Люди на экране во всем напоминали живых. Но они не умели говорить. И ученые всех стран начали лихорадочно искать способы, как научить людей на экране говорить. Для этого было использовано несколько совершенно различных по своей природе явлений.

Вы все, без сомнения, хорошо знакомы с фотографией. Рассматривая фотопленку, легко заметить, что резких границ между темными и светлыми местами нет. Вместо них существует плавный переход. Это значит, что светочувствительная пленка способна различать слабый и сильный свет. На это обстоятельство и обратили внимание, когда решили осуществить запись звука при помощи света. Для этого сначала необходимо было превратить звуковые колебания в колебания электрического тока, питающего лампочку. В цепь этой лампочки включили микрофон.

Перед лампой двигалась фотографическая пленка. После обработки пленки на ней оказалась светлая полоса различной прозрачности. Где больше упало света, полоса была темней, а там, где света упало меньше, — светлей. Одним словом, так получают негатив. Ведь прозрачность пленки обратна силе звука — чем сильнее звук, тем света будет больше, а на пленке эта часть будет затемненной. Значит, надо пленку отпечатать. Эта новая позитивная пленка и будет фотографией звука. Так записывается звук на кинопленку.

Звук за работой i_070.jpg

Схема записи звука на пленку

Теперь познакомимся с тем, каким образом, имея фотографию звука, осуществить его воспроизведение. Освещая эту фотографию обычным светом, можно получить свет мигающий. Для этого достаточно пропускать узкий пучок света от лампочки постоянной яркости через движущуюся пленку. Так как полоса различной прозрачности, то прошедший свет будет то ярче, то тусклее.

Звук за работой i_071.jpg

Схема воспроизведения звука

Но как теперь этот мигающий свет, колебания яркости которого совпадают с колебанием мембраны микрофона, превратить в звук?

Знаменитый немецкий физик Генрих Герц открыл интереснейшее явление, названное фотоэффектом.

Это явление заключалось в том, что, как оказалось, световые лучи могут выбивать из различных тел заряженные частицы — электроны. Вы, наверное, слышали это слово — фотоэлемент. Так называется прибор, использующий это явление.

Простейший фотоэлемент представляет собой стеклянный сосуд, внутри которого расположены две пластинки. Одна из них, которая освещается светом, соединяется с отрицательным полюсом электрической батареи и поэтому заряжена отрицательно. Другая пластина соединяется с положительным полюсом батареи.

Под действием света с отрицательно заряженной пластинки вылетают электроны, которые тотчас притягиваются другой, положительно заряженной пластинкой. Таким образом, в сосуде появляется направленное движение зарядов — электрический ток. Сила тока в цепи изменяется в такт с изменением количества света, падающего на отрицательно заряженную пластинку.

Звук за работой i_072.jpg

Принцип работы фотоэлемента

Сейчас созданы фотоэлементы, весьма чувствительные к ничтожным количествам света. Получаемый при этом электрический ток усиливают специальными усилителями.

Вот, имея в распоряжении такой фотоэлемент, можно заставить зазвучать фотографический снимок звука. На кинопленке эта запись называется звуковой дорожкой. Когда пленка движется, узкий пучок света просвечивает звуковую дорожку, и фототок будет точно следовать за всеми изменениями интенсивности света.

После усиления фотоэлектрический ток проходит по обмотке электромагнита, который, притягивая с различной силой мембрану, приводит ее в колебание — заставляет звучать.

Так воспроизводится звук, записанный на фотопленку.

Током звуковой частоты неудобно питать электрическую лампочку, свет которой не успевает меняться вслед за изменением тока из-за того, что нить накала не успевает остывать (тепловая инерция). Для этой цели удобнее всего использовать так называемый керр-эффект.

Сущность этого явления слишком сложна, и мы не будем о нем рассказывать. Скажем только, что в этом случае никакой инерции нет — свет моментально изменяется вслед за изменением тока микрофона.

Другой способ световой записи звука на кинопленку называют «поперечной записью». В этом случае интенсивность света, который падает на пленку, остается все время одинаковой, но световой пучок в виде узкой ленточки во время движения пленки освещает ее неодинаково по ширине.

Для этого световой зайчик должен все время бегать от одного края к другому, в такт колебаниям тока звуковой частоты, создаваемого в микрофоне.

Но это еще не все.

Сравнительно недавно удалось получить магнитную фотографию звука на проволоке.

Тут воспользовались явлениями, которые нам уже хорошо знакомы. Мы знаем, что звуковые колебания воздуха мембрана микрофона преобразует в механические. Благодаря этому она изменяет свое положение относительно магнита. И вот в обмотке возникает электрический ток звуковой частоты. Этот ток можно передать по проводам, как это сделал в свое время Белл, а затем заставить другую мембрану совершать колебания, чтобы воспроизвести звук.

Но с другой стороны, если этот ток будет проходить через обмотку другого магнита, вблизи которого движется проволока, то ее различные участки будут намагничиваться то сильнее, то слабее, в зависимости от силы тока, протекающего через обмотку магнита. После этого каждый участок проволоки долгое время остается намагниченным. Таким образом, звуковые колебания вначале преобразуются в колебания силы тока, а затем в колебания намагниченности различных участков проволоки. Так звук записали на проволоку. Чтобы воспроизвести его, необходимо эту проволоку вновь перемещать с прежней скоростью вблизи обмотки электромагнита. При этом в обмотке магнита будет возникать ток, сила которого все время меняется. После усиления этот ток проходит по обмотке другого магнита, который заставляет свою мембрану совершать колебания.