В нормальном металле электроны подвергаются электрон-фононному рассеянию при любой температуре. Поэтому кусок провода имеет электрическое сопротивление при любой температуре, отличной от абсолютного нуля (0 K). При абсолютном нуле тепла нет, а значит, нет и фононов. Однако достичь абсолютного нуля невозможно. Используя крайне специфические экспериментальные методы, можно достичь очень низких температур, например одной миллионной доли градуса над абсолютным нулём, но даже при этой невероятно низкой температуре существует некоторое количество фононов и происходят акты электрон-фононного рассеяния. Кроме того, если начать пропускать сколько-нибудь значительный ток по куску обычного провода, охлаждённого до очень низкой температуры, он нагреется. Как упоминалось в главе 17, линии электропередачи, идущие от электростанций к городам, теряют много электроэнергии. Теперь мы понимаем почему. Это связано с электрическим сопротивлением проводов, то есть с электрон-фононным рассеянием.
Сверхпроводимость
Вещества, которые не имеют электрического сопротивления при отличной от абсолютного нуля температуре, называются сверхпроводниками, а течение электронов по сверхпроводящему куску провода называется сверхпроводимостью. В металлах сверхпроводимость возникает только при очень низких температурах. Голландский физик Хейке Камерлинг-Оннес (1853–1926) открыл сверхпроводимость в 1911 году, когда охладил ртуть до 4 K (−269 °C). Он обнаружил, что её сопротивление упало до нуля. Приведём также примеры некоторых других металлов и максимальные значения температуры, при которых они являются сверхпроводящими: ниобий — 9,26 K, свинец — 7,19 K, ванадий — 5,3 K, алюминий — 1,2 K и цинк — 0,88 K.
Явление сверхпроводимости смогли объяснить лишь десятки лет спустя. В 1972 году три американских физика — Джон Бардин (1908–1999), Леон Купер (р. 1930) и Джон Шриффер (р. 1931) — получили Нобелевскую премию по физике
«за создание теории сверхпроводимости, обычно называемой БКШ-теорией».
БКШ-теория была разработана в 1957 году и является исчерпывающим квантовомеханическим объяснением электрон-фононного взаимодействия при низкой температуре. В 1956 году Леон Купер показал, что электрон-фононные взаимодействия могут приводить к спариванию электронов. Два электрона в некотором смысле объединяются, хотя физически они находятся далеко друг от друга. В БКШ-теории была использована эта идея и показано, что такие куперовские пары не испытывают обсуждавшегося выше электрон-фононного рассеяния, которое служит причиной электрического сопротивления. Когда нет электрон-фононного рассеяния, электроны движутся сквозь металл, не испытывая сопротивления, даже при температуре, отличной от абсолютного нуля. Поскольку сопротивление отсутствует, то нет и потерь электроэнергии, несмотря на прохождение сильного тока.
Сверхпроводники уже сегодня имеют множество применений, и не вызывает сомнения появление в будущем ещё более важных и широко распространённых приложений. Для магнитно-резонансной томографии (МРТ) требуются очень мощные магниты. Большой цилиндр МРТ, внутрь которого помещают пациента, — это сверхпроводящий электромагнит. Магнитное поле появляется, когда электрический ток течёт по свёрнутому в катушку проводу. Чтобы получить сильное магнитное поле, необходим очень сильный ток и большое количество провода, свёрнутого в катушку. До появления сверхпроводящих электромагнитов не удавалось получить достаточно сильных магнитных полей. Провод слишком сильно нагревался, и его охлаждение становилось огромной проблемой. Теперь провод делают из сверхпроводящего металла, такого как ниобий. Когда в катушке запускается течение электронов, два её конца соединяют. Электроны продолжают кружиться по катушке. Поскольку сопротивления нет, то нет и потерь энергии, а значит, не требуется подводить к катушке дополнительное электричество. Без сверхпроводимости у нас не было бы МРТ.
Ещё одна большая надежда — это сверхпроводящие линии электропередачи. Такие линии электропередачи полностью исключили бы потери электроэнергии. Появилась бы возможность передавать электричество на гораздо большее расстояние, чем сегодня. Проблема состоит в том, что металлические сверхпроводники должны быть настолько холодными, что использовать их для линий электропередачи непрактично. Существуют новые типы высокотемпературных сверхпроводящих материалов. Их открыли в 1986 году Карл Мюллер (р. 1927) и Йоханнес Беднорц (р. 1950). Они получили Нобелевскую премию по физике в 1987 году
«за важный прорыв в физике, выразившийся в открытии сверхпроводимости в керамических материалах».
На сегодня сверхпроводимость в таких керамических материалах не получила исчерпывающего теоретического объяснения. Сверхпроводимость в них может наблюдаться при температурах до 138 К. Эта температура достаточно высока для многих практических приложений. Поскольку высокотемпературные сверхпроводники являются керамическими, из них нельзя делать провода, как из металлов{38}. Однако в будущем исследования могут привести к появлению более удобных для использования высокотемпературных сверхпроводников, которые революционизируют передачу электроэнергии и другие области электроники.
20. Квантовое мышление
Когда отец, держа младенца на руках, показывает на небо и говорит: «Это Луна», младенец, конечно, замечает в небе яркий объект. Он может запомнить, что этот свет в небе называется «Луна», но он не понимает, что такое Луна и где она находится. В возрасте 7–8 лет представление о том, что такое Луна, становится более глубоким. Ребёнок уже знает, что Луна очень сильно отличается от уличного фонаря на углу квартала, что она находится очень далеко и что дотронуться до неё и забраться на неё нельзя, хотя много лет назад люди всё-таки там побывали. Взрослея, человек приобретает адекватное представление о Луне, даже если не научится рассчитывать её орбиту вокруг Земли с помощью ньютоновской классической механики. Взрослый знает, что видимое движение Луны по небу связано с вращением Земли, что Луна находится очень далеко, но гораздо ближе, чем планеты Солнечной системы, и что человек, находящийся на Луне, весит гораздо меньше и прыгнуть может гораздо выше, чем на Земле, поскольку масса Луны меньше и потому сила тяжести там слабее.
Опыт учит нас понимать классический мир
Наше понимание Луны углубляется с возрастом не только благодаря образованию, но и за счёт интуитивной логики в описании Луны как объекта, обращающегося вокруг Земли. Это описание во многих отношениях совместимо с нашим повседневным опытом. Если бросить бейсбольный мяч, он опишет дугу, прежде чем упадёт на землю. Если бросить его сильнее и направить выше, он поднимется на бóльшую высоту и улетит дальше, описав до падения дугу большего размера. Легко и естественно расширить это представление и понять, что ракета, разогнав объект до очень высокой скорости и направив его очень высоко, заставит его описать дугу, которая охватит половину Земли, что, по сути, и делается межконтинентальными ракетами. После этого уже нетрудно согласиться, что если с помощью ещё более мощной ракеты разогнать объект ещё сильнее, то описываемая им дуга превратится в орбиту вокруг Земли. Тогда становится ясно, что Луна — это просто очень большой объект, движущийся достаточно быстро, чтобы обращаться по орбите вокруг Земли.
Наша способность перейти от бейсбольного мяча к обращению Луны вокруг Земли основывается на повседневном опыте применения классической механики. Однако для того, чтобы собрать все факты воедино, требуется способность к абстрактным рассуждениям. В древности люди разумно полагали, что Луна обращается вокруг Земли. В конце концов, невооружённым глазом видно, что она движется по небу. Можно проделать простой эксперимент, чтобы понять, почему Луна выглядит обращающейся вокруг Земли. Встаньте посреди комнаты, в которой на стене висит лампа, и начните медленно поворачивается кругом. Вы увидите, что светильник приходит в движение. Повернувшись к нему спиной, вы перестанете его видеть. По мере вращения светильник появится на краю вашего поля зрения, переместится в его центр, а потом исчезнет за другим краем. Он не появится вновь, пока вы не совершите ещё полоборота. Объединяя этот простой опыт с тем, что мы знаем о бейсбольных мячах и межконтинентальных ракетах, нетрудно принять, а на самом деле и понять, что Луна обращается вокруг Земли и что Земля вращается вокруг своей оси, вызывая «восходы» и «заходы» Луны.