Мойте руки перед едой! Врачам, долго и успешно пропагандирующим этот лозунг, обеспечена поддержка физиков.
Ибо любой физический — да и не только физический — опыт есть результат упорной борьбы человека с природой. Она нисколько не стремится к чистоте. Напротив, все, что можно, она перемешивает друг с другом. Да еще так тесно, что отделить одно от другого нередко требует колоссального труда и немалого хитроумия.
История физики — это история борьбы за чистоту опыта. Интересующему явлению всегда сопутствует компания побочных явлений. Эти явления постоянно мешают; нередко они совсем маскируют нужное явление.
Допустим, — и это ближе к нашей теме — физик изучает электрический разряд в чистом газе, к примеру, в аргоне. Значит, прежде всего надо получить чистый газ. Аргон добывается из воздуха, где его ничтожные доли процента.
Сегодня физик может не беспокоиться: к его услугам мощная химическая промышленность. Но еще полвека назад он должен был добывать аргон собственными руками.
Процедура извлечения аргона из воздуха длинна и хлопотна. Пришлось бы долго описывать ее. Но вот аргон получен. Чистый? Конечно, нет. Абсолютно чистых веществ человек еще никогда не имел в своем распоряжении.
Все вещества, даже очень чистые, хоть и немного, но загрязнены примесями. Аргон, например, запачкан следами кислорода — очень неприятного газа. Дело в том, что кислород, как выяснилось впоследствии, очень активно вмешивается в ход электрического разряда и может сильно напортить в опытах.
Совсем избавиться от кислорода невозможно. Физик в нашем рассказе удовлетворяется примесью, скажем, одного атома кислорода на тысячу атомов аргона.
Следующий этап — ввести аргон в сосуд, в котором будет проходить опыт. Теперь надо очищать сосуд. Задача эта еще труднее. Она напоминает работу билетеров в кинотеатре, когда закончился детский сеанс и должен начаться взрослый. Да еще с грозным аншлагом: «Дети до 16 лет не допускаются!» Такое объявление способно только разжечь мальчишечье любопытство.
И, вместо того чтобы чинно проследовать на выход, мальчишки прячутся по всем закоулкам зала. Вспугнутые билетерами, они выскакивают в двери, чтобы вернуться через окна. Несмотря на все старания билетеров, на взрослом сеансе всегда останется «примесь» мальчишек.
Примерно так и получается при откачке воздуха из сосуда перед наполнением его чистым газом. И, подобно билетерам, физики мирятся с неизбежным злом. Лишь бы этого «зла» было поменьше!
Пойдемте дальше. Если физик собирается изучать ионизацию в газе — а ее и создает электрический разряд, — то прежде всего надо убрать ионизацию, появившуюся еще в отсутствие этого разряда. Фон, как говорят физики. Если изучаемая ионизация будет слаба, то фон ее может начисто скрыть.
Наш физик работает уже в начале двадцатого века. Он уже знает о существовании радиоактивности, знает, что она может обнаружиться и по ионизации газа. Те же уран и радий — пусть в ничтожных количествах — обитают во всех земных породах. С этими породами они попадают во все строительные материалы. Все здания, хоть и очень слабо, но радиоактивны.
Значит, на вольный воздух! Но и тут нет полного спасения. Радий, распадаясь, постоянно выделяет радиоактивный газ — радон. А радон уходит в воздух. Правда, если выкачать воздух из опытного сосуда, от радона можно практически избавиться. Но не выкачаешь же всю атмосферу!
Чтобы радиоактивные излучения не проникали в сосуд, его надо заэкранировать со всех сторон свинцом. Ну, теперь, кажется, все в порядке? Наш физик вместо ответа беспомощно показывает на листочки заряженного электроскопа. Да, они меньше опали по сравнению с тем, что было до того, как приняли защитные меры. Меньше опали, но все же опали. Хоть маленькая, а все же ионизация осталась.
Ну и ладно: мало ли какие бывают мелкие погрешности в опыте! О странной «неуничтожимой» ионизации забыли. Но не все: нашлись дотошные ученые, которые решили дойти до конца, и среди них известный уже нам Чарлз Вильсон. Однако осуществление их намерения откладывалось из года в год.
Тем временем непонятным явлением заинтересовались австрийцы. Земля, воздух — источник радиоактивной грязи. Так подальше от них, — решили эти ученые. И поднялись в небо на воздушных шарах. Первые километры подъема. Ионизация действительно уменьшается. Но затем начинается непонятное: ионизация начинает снова расти, причем весьма быстро. Австриец Виктор Гесс, одним из первых обнаруживший это примечательное явление, перебрав в уме все возможные его причины, высказывает удивительную мысль. Эта ионизация вызывается какими-то сильно проникающими лучами неземного происхождения!
Как всегда, когда высказывается что-то удивительно смелое, нужно время, чтобы еще и еще раз проверить его. И, если оно правильно, свыкнуться с ним. Но историю мало волнуют судьбы научных открытий. Через четыре года после открытия Гесса в Европе вспыхнула первая мировая война.
И все же в считанные мирные годы перед первой мировой войной немецкий физик Вернер Кольхерстер успевает подняться еще выше Гесса и подтвердить его результаты. На высоте двенадцати километров, когда Земля за окном иллюминатора воздушного шара скрылась в сизой дымке, приборы показали, что ионизация возросла в целых тридцать раз!
Да, ее явно вызвали лучи неземного происхождения. Таинственные лучи, идущие из глубин космоса.
Град невидимых частиц, бесперебойно бомбардирующих Землю! Ученые ухитрились сделать его и видимым и слышимым.
Следы всегда остаются. По счастью, неведомые пока частицы космических лучей не вняли этому предупреждению юристов.
Они, по образному сравнению известного их исследователя Пьера Оже, напоминают мотоциклистов, на недозволенной скорости врезающихся в толпу.
Мы предпочтем менее печальный образ — сильного зверя, попавшего в заповедный лес. Этот образ тоже далек от истинного: наш зверь, вместо того, чтобы задрать первую попавшуюся ему на пути жертву, предпочитает лишь содрать с нее кусок шкуры и несется дальше, к следующей жертве. Путь его очерчен покалеченными обитателями леса. Наконец, растратив все свои силы, наш зверь где-то укладывается на отдых.
После появления «планетарной» модели атома Резерфорда нам уже понятно, что обитатели заповедного леса — атомы, ядра которых одеты в электронные шкуры. Стоит вырвать хотя бы небольшой кусок шкуры — и атом превращается в электрически заряженный ион. Если включить теперь электрическое поле, то покалеченные атомы побегут «жаловаться» к катоду. Кусочки шкур тоже не останутся в неподвижности — они, словно подхваченные ветром, понесутся к аноду. Это, как мы уже догадываемся, — электроны.
В газе пошел электрический ток! Страшно слабенький, далеко за пределами чувствительности самых совершенных амперметров, — но все же ток. Тем временем он выбрался через электроды из сосуда и побежал по проводничку к электроскопу. И предварительно заряженный электроскоп стал разряжаться: листочки его начали опадать. Так получили первую ионизационную камеру.
Нет, она не позволяет еще ничего слышать и видеть. Но она уже может сигнализировать: в лесу появились хищники! И она уже может даже примерно оценить, сколько их появляется, скажем, за час или за день. Именно с ионизационной камерой проводили свои первые измерения Гесс и Кольхерстер.
Немного спустя физики обзавелись новым капканом для частиц. Не иначе, как Ганс Гейгер — «белый раб» своего учителя Резерфорда — безумно устал от бесконечного сидения в темной комнате, где на экране время от времени появлялись слабенькие вспышки от альфа-частиц. А может быть, и не настолько устал, чтобы ему в голову не приходили любопытные мысли.
Во всяком случае, именно он придумал счетчик частиц, который получил его имя. Теперь уже можно было следить за появлением каждого хищника в заповедном лесу. Посмотреть на схему — та же ионизационная камера: тот же сосуд с двумя электродами, на которые подано напряжение.