Изменить стиль страницы

Таким образом, основная идея теории инфляции состоит в том, что Вселенная на ранних стадиях своего возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии. Эта энергия, как и исходная материя, возникла из квантового вакуума, то есть из ничего. Объясняя происхождение Вселенной из возбужденного вакуума, теория инфляции пытается решить одну из основных проблем мироздания – проблему возникновения всего (Вселенной) из ничего (из вакуума).

В середине XX в. формулируется концепция горячей Вселенной. Согласно данной концепции, на ранних этапах расширения, вскоре после Большого взрыва, Вселенная была очень горячей: излучение доминировало надвеществом. При расширении температура падала, и с некоторого момента пространство стало для излучения практически прозрачным. Излучение, сохранившееся с начальных моментов эволюции (реликтовое излучение), равномерно заполняет всю Вселенную до сих пор. Вследствие расширения Вселенной температура этого излучения продолжает падать. В настоящее время она составляет 2,7 К.[4] Открытие реликтового излучения в 1965 г. явилось наблюдательным обоснованием концепции горячей Вселенной. Было выявлено фундаментальное свойство Вселенной – она горячая. Таким образом, в соответствии с моделью, разработанной на основе теории относительности, расширяющаяся Вселенная – однородная, изотропная, нестационарная и горячая

Убедительными аргументами, подтверждающими обоснованность космологической модели расширяющейся Вселенной, являются установленные факты. К числу таких фактов относятся следующие:

♦ расширение Вселенной в соответствии с законом Хаббла;

♦ однородность светящейся материи на расстояниях порядка 100 Мпк;

♦ существование реликтового фона излучения с тепловым спектром, соответствующим температуре 2,7 К.

Возраст Вселенной, согласно современной космологической концепции ее происхождения и развития, исчисляется с начала расширения и оценивается в 13–15 млрд лет. Современная астрономия интенсивно развивается: открыты новые космические объекты, установлены ранее неизвестные факты. К числу сравнительно недавно открытых космических объектов относятся квазары, нейтронные звезды, черные дыры.

Квазары – мощные источники космического радиоизлучения, которые, как предполагают, являются самыми яркими и далекими из известных сейчас небесных объектов.

Нейтронные звезды – предполагаемые звезды, состоящие из нейтронов, образующиеся, вероятно, в результате вспышек сверхновых звезд.

Черные дыры (или «застывшие звезды», «гравитационные могилы») – объекты, в которые, как предполагают, превращаются звезды на заключительной стадии своего существования. Пространство черной дыры как бы вырвано из пространства метагалактики: вещество и излучение «проваливаются» в нее и не могут «выйти» обратно.

Исследование предельно далеких галактик привело к неожиданному открытию, вызвавшему кардинальный пересмотр представлений о динамике расширения Вселенной и о роли в ней обычной материи. Было установлено, что в настоящее время Вселенная расширяется ускоренно. Агент, вызвавший это ускорение, получил название темной энергии. Природа темной энергии пока неизвестна.

Вновь установленные факты изучаются с позиций эволюционного подхода к решению вопросов о происхождении и развитии Вселенной, согласно которому Вселенная выступает как результат дифференциации и усложнения форм организации материи.

6.2. Галактики

Вселенная образована огромным количеством галактик. Галактика (от греч. galaktikos – молочный, млечный) – звездная система, в свою очередь образованная звездами различных типов, звездными скоплениями. Помимо звездв состав галактик могут входить газовые, пылевые туманности и др. Разным галактикам соответствуют различные, но вполне определенные элементы. Состав галактик зависит от ее возраста и условий развития. Полагают, что среднее расстояние между галактиками 2 млн световых лет, а типичная скорость движения галактик – около 1000 км/с. Согласно расчетам, для прохождения расстояния до ближайшей галактики-соседки требуется около 1 млрд лет, и возможность столкновения любой галактики с себе подобной галактикой не исключена.

Галактик – миллиарды, и в каждой из них насчитываются миллиарды звезд. Предположения о множественности галактик высказывались еще в середине VIII в., но доказательства их существования появились только в первой четверти XX в. Галактики образуют метагалактику (Вселенную), размеры которой оцениваются в 15–20 млрд световых лет, а возраст – в 13–15 млрд лет. Некоторые галактики излучают радиоволны с потрясающей мощностью. Предполагают, что в них существует магнитное поле, тормозящее движение находящихся там элементарных частиц, а это вызывает радиоизлучение.

В 60-х гг. XX в. были открыты квазары – квазизвездные радиоисточники – самые мощные источники радиоизлучения во Вселенной со светимостью в сотни раз большей светимости галактик и размерами в десятки раз меньшими их. Природа квазаров пока неясна. Возможно, квазары представляют собой ядра новых галактик, а значит, процесс образования галактик продолжается и поныне.

Галактики имеют свой центр (ядро), они различаются по форме, в соответствии с которой их классифицируют как спиральные, эллиптические, шаровые, неправильные Вследствие удаленности галактик свет от входящих в них миллиардов звезд сливается, создавая впечатление светящегося туманного вещества, поэтому галактики получили название туманностей.

Ближайшая к нам большая галактика – наблюдаемая в созвездии Андромеды туманность – Туманность Андромеды. Это спиральная галактика, находящаяся от на нас расстоянии около 2 млн световых лет. Она была открыта в 1917 г. как первый внегалактический объект. В 1923 г. путем спектрального анализа в этом объекте были обнаружены звезды и таким образом доказана его принадлежность к другой галактике. Туманность Андромеды имеет спутники эллиптической или шаровидной формы – более мелкие галактики. Еще одна спиральная галактика находится в созвездии Треугольника. По размерам она меньше Туманности Андромеды и не имеет спутников.

Галактики образуют группы галактик. Таких групп во Вселенной множество, они могут быть малыми и большими. Так, огромное облако, наблюдаемое в созвездии Девы, состоит из сотен галактик. В состав одной из групп – Местного скопления – входят спиральные галактики вместе со своими спутниками: Туманность Андромеды, галактика в созвездии Треугольника и наша Галактика.

Наша Галактика – это звездная система, в которую входят все звезды, видимые в созвездиях, и все звезды Млечного Пути, а также газовые и пылевые туманности.

Пылевые туманности – облака в межзвездном пространстве, образованные очень мелкой космической пылью.

Космическая пыль препятствует прохождению света от звезд, поглощая его. В большей степени поглощается коротковолновая, сине-зеленая часть спектра, поэтому свет звезд становится более желтоватым и даже красноватым. Космическая пыль является существенной помехой для исследований, поскольку она искажает свет звезд, ослабляет их блеск, а более далекие из них делает совсем невидимыми. Полагают, что в малой доле космическая пыль образуется от столкновения и разрушения мелких твердых тел, но в своей основной массе она возникает, вероятно, вследствие сгущения межзвездного газа.

Межзвездный газ был обнаружен по линиям поглощения в спектрах звезд. В его состав входит преимущественно водород, в меньшей степени – гелий; содержание азота и других легких газов небольшое. Межзвездный газ в крайне низких концентрациях имеется в большей части межзвездного пространства, а в отдельных местах образует скопления – газовые туманности Считают, что газ в туманностях частично является остатком тех газов, из которых когда-то возникли звезды, а также возникают и теперь: он выбрасывается звездами. В местах скопления газа может содержаться значительное количество космической пыли – это газово-пылевые туманности. Газовые и газово-пылевые туманности благодаря их свечению изучают с помощью астрономических приборов. Свечение газов в крупных газовых туманностях можно наблюдать потому, что толщина их огромна, а общая масса составляет от нескольких десятков до сотен тысяч масс Солнца. Газовые туманности бывают разных размеров и различной, чаще неправильной, формы. Туманности правильной, округлой формы – небольшие. Их называют планетарными.

вернуться

4

К – кельвин, единица измерения температуры. Соотношение между температурой в кельвинах (Г) и температурой, выраженной в градусах Цельсия (t°), следующее: Ф = t° + 273,15.