During the span of time from about A+0.144 to 250, the watchword was “consolidation,” inevitably trimmed to “consol.” It basically meant the retrofitting of new trusswork around the hamster tubes and other sprawling constructs that had been added to the truss during the frantic first couple of months. Other problems were addressed at the same time, most notably the building of more radiators for dumping waste heat into space. These didn’t work if they were too closely spaced—they just shone heat on one another. So the heat rejection complex waxed enormous and ended up growing generally aftward, like an empennage—the feathers on the butt of an arrow. It was no mere figure of speech. In the same way that an arrow’s heavy head and spreading feathers kept it pointed straight forward, the combination of massive Amalthea at the forward end and the heat radiators trailing away aft helped keep Izzy pointed in the right direction and somewhat reduced the demand for thruster firings. It also protected the radiators from micrometeoroids. Rocks could theoretically come from any direction and strike the space station, but they were most likely to hit its forward end, and so forward-facing surfaces of the space station’s modules had generally been equipped with shields. Amalthea, of course, was the biggest and best shield of all.
The number of solar panels might have grown too, had they been doing things the old way. But very early in the Cloud Ark project it had become obvious that, while photovoltaics might be a useful adjunct, the only sure way to keep everything running was with the small nuclear devices called RTGs, or radioisotope thermoelectric generators. These made heat all the time, whether you wanted them to or not, and so created further demand for radiators.
The radiators were, in essence, a gigantic exploit in zero-gravity plumbing. The excess heat had to be collected from where it was produced (mostly, the inhabited and pressurized parts of Izzy) and transported to where it could be gotten rid of (the “empennage” growing to aft). The only plausible way of doing this was by using a fluid, pumping it around a loop, heating it up at one end and cooling it off at the other. At the hot end they used heat exchangers and so-called cold plates that just soaked up heat from wherever it was a problem. At the cold end the fluid fanned out through networks of thin tubes, like capillaries, sandwiched between flat panels whose sole purpose was to become slightly warm and shine infrared light into deep space, cooling down Izzy by warming up faraway galaxies. Joining the hot and cold ends of the loop was a system of pumps and pipes that got bigger every day and that was prone to many of the same kinds of trouble as bedeviled earthbound plumbing. Making it twice as complicated was that some of the loops used anhydrous ammonia and others used water. Ammonia worked better, but it was dangerous, and you couldn’t easily get more of it in space. If the Cloud Ark survived, it would survive on a water-based economy. A hundred years from now everything in space would be cooled by circulating water systems. But for now they had to keep the ammonia-based equipment running as well.
Further complications, as if any were wanted, came from the fact that the systems had to be fault tolerant. If one of them got bashed by a hurtling piece of moon shrapnel and began to leak, it needed to be isolated from the rest of the system before too much of the precious water, or ammonia, leaked into space. So, the system as a whole possessed vast hierarchies of check valves, crossover switches, and redundancies that had saturated even Ivy’s brain, normally an infinite sink for detail. She’d had to delegate all cooling-related matters to a working group that was about three-quarters Russian and one-quarter American. The majority of all space walk activity was related to the expansion and maintenance of the cooling system and, uncharacteristically for her, she was content just to get a report on it once a day.
All of that plumbing, and all of those radiators, needed to be supported by Izzy’s structure just like anything else—they were especially prone to troubles under the general heading of “too floppy to survive reboost.” So, proceeding in the same general putting-out-fires mode, Ivy and the engineers on the ground next had to steer the program in the general direction of “consol,” or, as Ivy put it privately, “defloppification,” of the space station’s overall structure. And since it was out of the question to take apart what the Scouts and Pioneers had put in place, this took the form of building what amounted to external scaffolding around what was there. Viewed from a kilometer away, it looked quite similar to what one saw when some old and treasured building was being renovated: a latticework of structure, ugly but serviceable, grew around the underlying object, enveloping it and strengthening it without actually penetrating it.
In the early going, sections of truss were assembled on the ground, launched up whole, and slammed into place by teams of spacewalkers, buying large increases in structural integrity quickly and expensively. That approach soon fell prey to the law of diminishing returns and it became clear that the Arkers, as they’d started to be known, couldn’t be forever dependent on ground-based engineers custom-building structures.
The ground-based engineers didn’t even really know what was going on with Izzy anymore. Their CAD models had fallen behind. Dinah knew it because of a sudden surge in messages from exasperated engineers requesting that she send a robot out to such-and-such a place and aim its camera at such-and-such a module so that they could see what was actually there.
The Arkers needed tools and materials for building their own structures in situ. These started to arrive around Day 220. And it was a measure of how much things had changed on the ground that the solutions came in more than one form, from more than one source, often with little to no coordination. In the old days a proposed system would have been given a three-letter acronym and bounced back and forth between different agencies and contractors for fifteen years before being launched into space.
The single most useful structure-building system turned out to be a rough-and-ready implementation of an old but good idea. It was a little bit like the machine used by gutter and downspout contractors, mounted in the back of a truck, fed by a large roll of sheet metal, which would be bent into a gutter shape and extruded in pieces as long as you liked. This machine did much the same thing, except that it bent the sheet metal ribbon into a simple beam with a triangular cross section and then welded the edges together to make it permanent. It had been invented and prototyped long ago in the West, but the Chinese space agency had perfected it in the first couple of hundred days post-Zero and begun to launch the machines up with crews who knew how to use them. As long as they were supplied with electricity and rolls of aluminum they would go on pumping out beams forever. Connecting segments of beam into more complex structures, such as trusses and scaffolding, was a little more difficult. Welding in space, while possible, was complicated, and there wasn’t enough equipment. Instead they ended up using Tinkertoy-like connectors, again mass-produced by the Chinese, into which the ends of the triangular beams could be inserted, then tightened down using screws. At first many of these were shipped up in bulk from the ground, but on A+0.247 they took delivery of a 3-D printer that had been optimized to make more of them, with options for modifying the angle at which the beams would be inserted. This gave them the ability to design and build trusses on the fly, which was not possible with the mass-produced connectors. And as a last resort, Fyodor had an electron-beam welding machine that would work in zero gravity and a vacuum, undoubtedly the most expensive welder ever made, a marvel of Russian ingenuity, and he had trained Vyacheslav to use it. Vyacheslav then trained Tekla and two of the other spacewalkers, who set up a job queue and took turns drifting around Izzy’s increasingly complex structure tacking down a weld here and a weld there. Thus, constructed largely by the Chinese and the Russians, the scaffolding grew and stiffened. The reboost burns no longer produced alarming pops, bangs, and groaning noises. The hamster tubes gradually disappeared within shrouds of structural reinforcement and shielding. New docking ports began to sprout at Izzy’s extremities, like buds on tree branches, in preparation for the next phase: the coming of the first arklets.