Эти события могут быть сигналом, что СТО нарушается при экстремальных энергиях. Сидни Колеман и Шелдон Глэшоу предположили в конце 1990-х, что нарушение СТО могло бы повысить энергию, необходимую для создания пиона, таким образом, повышая энергию отсечки GZK и позволяя протонам более высоких энергий достигать детекторов на Земле[86].
Это не единственное возможное объяснение наблюдению таких высоко-энергичных протонов из космических лучей. Возможно, что они сами происходят близко от Земли, так что у них нет времени, чтобы быть замедленными через взаимодействие с космическим микроволновым фоном. Это можно было бы проверить, увидев, что протоны, о которых идёт речь, прибывают из любого привилегированного места в небе. До сегодняшнего дня нет таких свидетельств, но возможность остаётся.
Есть также возможность, что эти экстремальные высоко-энергичные частицы совсем не являются протонами. Они могли бы быть пока не известными видами стабильных частиц, с массой, намного большей, чем у протона. Если это так, это тоже было бы крупное открытие.
Конечно, всегда возможно, что ошибочен эксперимент. Команда AGASA сообщает, что их измерения энергии точны с неопределённостью в 25 процентов, что является большим процентом ошибки, но всё ещё не достаточным, чтобы объяснить существование высоко-энергичных событий, которые они видят. Однако, их оценка степени точности их эксперимента тоже могла быть ошибочной.
К счастью, проводимый в настоящее время эксперимент разрешит рассогласования. Это Детектор космических лучей Аугера, уже запущенный в работу в пампасах западной Аргентины. Если детекторы Аугера подтвердят японские наблюдения, и если другие возможные объяснения могут быть опущены, это было бы самым важным открытием последних ста лет — первое нарушение основных теорий, содержащих в себе научную революцию двадцатого столетия.
Что означает наблюдать частицы космических лучей с такой экстремальной энергией? Когда частица такой энергии ударяется о верхние слои атмосферы, она производит ливень других частиц, которые проливаются вниз на площадь во много квадратных километров. Эксперимент Аугера состоит из сотен детекторов, занимающих более 3000 квадратных километров аргентинских пампасов. Также на этой площади несколько световых сенсоров высокого разрешения сканируют небо, чтобы захватить свет, произведённый ливнем частиц. Объединяя сигналы, полученные от всех этих детекторов, исследователи Аугера могут определить энергию исходной частицы, которая врезалась в атмосферу, точно так же, как направление, с которого она прибыла.
Как об этом пишут, обсерватория Аугера только выпустила свои первые данные. Хорошая новость, что эксперимент работает хорошо, но всё ещё не вполне достаточно данных, чтобы решить, имеется ли отсечка, предсказанная на основе СТО, или нет. Всё ещё разумно надеяться, что по истечении нескольких лет будет достаточно данных, чтобы решить проблему.
Даже если команда Аугера объявит, что СТО остаётся жизнеспособной, одна эта находка будет самой важной в фундаментальной физике за последние двадцать пять лет — это значит, со времён неудачи поиска распада протона (см. главу 4). Долгая тёмная эра, во время которой теория развивалась без руководства со стороны эксперимента, наконец, закончится. Но если Аугер откроет, что СТО не полностью верна, это возвестит приход новой эры в фундаментальной физике. Стоит уделить некоторое время, чтобы рассмотреть последствия такой революционной находки и куда она может привести.
14
Равняясь на Эйнштейна
Предположим, что проект Аугера или некоторый другой эксперимент покажет, что СТО Эйнштейна нарушается. Это будет плохой новостью для теории струн: Это означало бы, что первое великое экспериментальное открытие двадцать первого века было полностью неожиданным для самой популярной «теории всего». Теория струн предполагает, что СТО верна точно в том виде, как она была записана Эйнштейном сто лет назад. На самом деле важным достижением теории струн было сделать теорию струн согласующейся как с квантовой теорией, так и с СТО. Так что теория струн предсказывает, что независимо от того, как далеко находятся их источники друг от друга, фотоны с разными частотами путешествуют с одной и той же скоростью. Как мы видели, теория струн не делает много предсказаний, но это одно из них; фактически, это единственное предсказание теории струн, которое может быть проверено с помощью существующей технологии.
Что означало бы для предсказаний СТО быть фальсифицированными? Имеются две возможности. Одна в том, что СТО неверна, но другая возможность приводит к углублению СТО. На этом разграничении основывается история, возможно, самой удивительной новой идеи, появившейся в фундаментальной физике в последнее десятилетие.
Имеются несколько экспериментов, которые могли бы обнаружить нарушение или модификацию СТО. Эксперимент Аугера мог бы сделать это, но также это могли бы сделать наши наблюдения гамма-вспышек. Это гигантские взрывы, которые за несколько секунд могут произвести столько света, сколько излучает целая галактика. Как подразумевает название, большая часть этого света излучается в виде гамма-лучей, которые являются очень энергичной формой фотонов. Сигналы от этих взрывов достигают Земли в среднем около раза в день. Впервые они были обнаружены в конце 1960-х военными спутниками, построенными для поиска нелегальных испытаний ядерного оружия. Сегодня они наблюдаются научными спутниками, чья цель и заключается в их обнаружении.
Мы не знаем точно, что является источником гамма-вспышек, хотя имеются правдоподобные теории. Они могут возникать от столкновения двух нейтронных звёзд или нейтронной звезды и чёрной дыры. Каждая пара могла бы вращаться друг вокруг друга миллиарды лет, но такие системы нестабильны. Поскольку они излучают энергию в виде гравитационных волн, они очень медленно сближаются в направлении друг друга по спирали, пока, наконец, не столкнутся, породив самое неистовое и энергичное из известных событий.
СТО Эйнштейна говорит нам, что весь свет путешествует с одинаковой скоростью независимо от его частоты. Гамма-вспышки обеспечивают лабораторию для проверки этого утверждения, поскольку они дают очень короткую вспышку фотонов в широком диапазоне энергий. Самое важное, им могут потребоваться миллиарды лет, чтобы достичь нас, и в этом заключается сердцевина эксперимента.
Предположим, что Эйнштейн ошибся и фотоны с различными энергиями путешествуют со слегка различными скоростями. Если два фотона, созданные в одном и том же удалённом взрыве, достигли Земли за разные времена, это, несомненно, будет указывать на нарушение СТО.
Что могло бы подразумевать такое важное открытие? Это могло бы, в первую очередь, зависеть от физического масштаба, на котором происходит нарушение. Одна ситуация, когда мы ожидаем, что разрушение СТО происходит на планковской длине. Вспомним из предыдущих глав, что длина Планка составляет около 10−20 от размера протона. Квантовая теория говорит нам, что этот масштаб представляет порог, ниже которого классическая картина пространства-времени распадается. Эйнштейновская СТО является частью классической картины, так что мы можем ожидать, что она нарушится точно в этой точке.
Могут ли какие-нибудь эксперименты увидеть эффект нарушения структуры пространства и времени на планковском масштабе? С помощью современной электроники могут быть обнаружены очень мелкие разницы во временах прибытия фотонов, но достаточно ли современная электроника хороша, чтобы измерить даже ещё более ничтожные эффекты квантовой гравитации? За десятилетия мы, теоретики, приучились, что планковская длина столь мала, что ни один осуществимый сегодня эксперимент не смог бы её обнаружить. Точно так же большинство профессоров физики сотню лет назад были уверены, что атомы слишком малы, чтобы увидеть их, мы повторяли эту ложь в бесчисленных статьях и лекциях. Но это ложь.
86
S. Coleman and S.L. Glashow, «Cosmic Ray and Neutrino Tests of Special Relativity,» <Космические лучи и нейтринные тесты СТО>, Phys. Rev. B, 405: 249-52 (1997);
S. Coleman and S.L. Glashow, «Evading the GZK Cosmic-Ray Cutoff,» <Как обойти GZK-отсечку космических лучей>, [http://arxiv.org/abs/hep-ph/9808446].