Изменить стиль страницы

Платонизм (реализм) — доктрина, согласно которой математика не творит и не придумывает рассматриваемые в ней «объекты», а открывает их, подобно тому как, например, Колумб открыл Америку. Таким образом, согласно этой точке зрения, объекты должны в некотором смысле «существовать» до их «открытия». Платонистская доктрина не предполагает, что объекты математического исследования находятся между собой в пространственно-временных отношениях. Обьекты эти суть отделенные от материальных оболочек вечные Формы, прототипы, населяющие особые абстрактные Сферы, доступные лишь Интеллекту. Согласно такой концепции треугольные или круглые формы физических предметов, данные нам в ощущениях, сами по себе вовсе не являются объектами математического исследования. Эти пространственные формы суть лишь несовершенные воплощения единого «совершенного» Треугольника или «совершенного» Круга, вечных, неизменных, лишь частично проявляющихся в облике материальных предметов и являющихся подлинными объектами рассмотрения математической мысли. Сам Гёдель обнаружил близость к такого рода воззрениям, заявляя, «что допущение… классов и общих понятий столь же законно, как и допущение физических тел… и имеются столь же высокие основания верить в их существование» (из работы Гёделя «Russell's, Mathematical Logic» в книге The Philosophy of Bertrand Russei. Evanston; Chicago, 1944. C. 137). (Данная здесь авторами характеристика «платонизма» довольно-таки поверхностна, а традииионная квалификаиия Гёделя как платониста далеко не бесспорна. Впрочем, тема эта далеко выходит за рамки настоящей книги. См., например: Френкель А., Бар-Хиллел И. Основания теории множеств / Пер. с англ. М.: Мир, 1966. Гл. X. § 8; 3-е изд. М.: URSS, 2010. Прим. перев.)

Заключения, к которым пришел Гёдель, порождают, естественно, и вопрос, можно ли построить вычислительную машину, сравнимую по своим «творческим» математическим возможностям с человеческим мозгом. Современные вычислительные машины обладают некоторым точно фиксированным запасом команд, которые умеют выполнять их элементы и блоки; команды соответствуют фиксированным правилам вывода некоторой формализованной аксиоматической процедуры. Таким образом, машина решает задачу, шаг за шагом выполняя одну из «встроенных» в нее заранее команд. Однако, как видно из гёделевской теоремы о неполноте, уже в элементарной арифметике натуральных чисел возникает бесчисленное множество проблем, выходящих за пределы возможностей любой конкретной аксиоматической системы, а значит, и недоступных для таких машин, сколь бы остроумными и сложными ни были их конструкции и с какой бы громадной скоростью ни проделывали они свои операции. Для каждой конкретной задачи в принципе можно построить машину, которой эта задача была бы под силу, но нельзя создать машину, пригодную для решения любой задачи. Правда, и возможности человеческого мозга могут оказаться ограниченными, так что и человек тогда сможет решить не любую задачу. Но даже если это так, структурные и функциональные возможности человеческого мозга пока еще намного больше по сравнению с возможностями самых изощренных из мыслимых пока машин, так что непосредственной опасности вытеснения людей роботами не видно[20].

При всем сказанном теорему Гёделя отнюдь не следует расценивать как некое основание для интеллектуального пессимизма или оправдания мистических представлений о разуме. Обнаружение того факта, что для любой формальной системы существуют арифметические истины, которые нельзя в ней формально доказать, вовсе не означает наличия каких-то совершенно непознаваемых истин или же что роль строгого доказательства отныне должна занять некая «мистическая» интуиция, заслуживающая большего доверия, чем применяемые нами формы интеллектуального исследования. Не означает оно и утверждаемой некоторыми мыслителями «принципиальной ограниченности человеческого мышления». Означает оно лишь то, что возможности нашего мышления не сводятся к полностью формализуемым процедурам и что нам еще предстоит открывать и изобретать новые принципы доказательств. Мы ведь видели уже, что истинности некоторых математических утверждений, не выводимых из данного множества аксиом, можно тем не менее установить при помощи метаматематических рассуждений. И утверждать, что для обоснования таких формально недоказуемых (но устанавливаемых посредством метаматематических рассуждений) истин можно в лучшем случае рассчитывать лишь на интуицию, было бы совершенно безответственно.

Констатированные выше ограничения возможностей вычислительных машин не свидетельствуют и о беспочвенности надежд на объяснение явлений жизни и человеческого мышления в физико-химических терминах. Сама по себе теорема Гёделя не отвергает и не подтверждает возможности такого рода объяснений. Единственный непреложный вывод, который мы можем сделать из гёделевской теоремы о неполноте, состоит что природа и возможности человеческого разума неизмеримо тоньше и богаче любой из известных пока машин. И работа самого Гёделя является замечательным примером этой тонкости и богатства, дающим повод отнюдь не для уныния, а, наоборот, для самых смелых надежд на силу творческой мысли.

Послесловие переводчика

Курт Гёдель — крупнейший специалист по математической логике — родился 28 апреля 1906 г. в Брюнне (ныне г. Брно, Чехия). Окончил Венский университет, где защитил докторскую диссертацию, был доцентом в 1933–1938 гг. После аншлюса эмигрировал в США. С 1940 по 1963 г. Гёдель работает в Принстонском институте высших исследований (с 1953 г. — профессор этого института). Гёдель — почетный доктор Йельского и Гарвардского университетов, член Национальной академии наук США и Американского философского общества.

В 1951 г. К. Гёдель удостоен высшей научной награды США — Эйнштейновской премии. В статье, посвященной этому событию, другой крупнейший математик нашего времени Джон фон Нейман писал[21]: «Вклад Курта Гёделя в современную логику поистине монументален. Это — больше, чем просто монумент, это веха, разделяющая две эпохи… Без всякого преувеличения можно сказать, что работы Гёделя коренным образом изменили сам предмет логики как науки».

Действительно, даже сухой перечень достижений Гёделя в математической логике показывает, что их автор по существу заложил основы целых разделов этой науки: теории моделей (1930 г.; так называемая теорема о полноте узкого исчисления предикатов, показывающая, грубо говоря, достаточность средств «формальной логики» для доказательства всех выражаемых на ее языке истинных предложений), конструктивной логики (1932–1933 гг.; результаты о возможности сведения некоторых классов предложений классической логики к их интуиционистским аналогам, положившие начало систематическому употреблению «погружающих операций», позволяющих осуществлять такое сведение различных логических систем друг к другу), формальной арифметики (1932–1933 гг.; результаты о возможности погружения классической арифметики в интуиционистскую, показывающие в некотором смысле непротиворечивость первой относительно второй), теории алгоритмов и рекурсивных функций (1934 г.; определение понятия общерекурсивной функции, сыгравшего решающую роль в установлении алгоритмической неразрешимости ряда важнейших проблем математики, с одной стороны, и в реализации логико-математических задач на электронно-вычислительных машинах — с другой), аксиоматической теории множеств (1938 г.; доказательство относительной непротиворечивости аксиомы выбора и континуум-гипотезы Кантора от аксиом теории множеств, положившее начало серии важнейших результатов об относительной непротиворечивости и независимости теоретико-множественных принципов).

Но даже если бы на «счету» Гёделя не было ни одного из таких замечательных достижений, достаточно было бы одной его работы, чтобы имя ее автора составило целую эпоху в истории науки. Именно этой двадцатипятистраничной статье двадцатипятилетнего автора и посвящена книжка известного американского логика Э. Нагеля и опытного популяризатора науки Дж. Р. Ньюмена, переведенная на большинство европейских языков.

вернуться

20

При всем правдоподобии последней фразы она никак не следует из предыдущего. Вообще, далеко не ясно, как распространенный тезис об ограниченности возможностей моделирования человеческого мышления можно согласовать с материалистической гипотезой о его природе. Ср., впрочем, заключительные два абзаца авторского текста. — Прим. перев.

вернуться

21

Цитируем по сборнику статей «Основания математики» выпущенному в Нью-Йорке в честь 60-летия К. Гёделя (оттуда же взяты приведенные выше краткие биографические сведения).