Изменить стиль страницы

Как бы то ни было, вопрос, который я хотел поставить перед Фейнманом, был о том, может ли квантовая механика заставить черную дыру распасться на черные дыры меньшего размера. Это представлялось мне чем-то вроде фрагментации очень большого атомного ядра на ядра меньшей величины. Я торопливо объяснил Фейнману, почему я думаю, что это должно происходить.

Фейнман сказал, что никогда не думал над этим. И более того, ему не нравится сам предмет квантовой гравитации. Эффекты квантовой механики в гравитации и гравитации в квантовой механике оказывались слишком малыми для измерения. Не то чтобы он считал этот предмет внутренне неинтересным, но без каких-либо измеримых эффектов, направляющих теорию, было безнадежно гадать, как она реально работает. Он сказал, что думал об этом много лет назад и не хотел бы задумываться об этом вновь. Он предположил, что может пройти лет пятьсот, прежде чем удастся понять квантовую гравитацию. В любом случае, через час ему предстоит читать лекцию и ему надо отдохнуть.

Лекция была чисто фейнмановская. Своим присутствием он заполнял всю сцену — темпераментный актер с бруклинским акцентом и жестикуляцией, иллюстрирующей каждое утверждение. Аудитория завороженно застыла. Он показывал, как можно просто и интуитивно мыслить о сложных задачах квантовой теории поля. Почти все остальные использовали другие, старые методы анализа задач, к которым он обращался. Эти старые методы были сложными, но он нашел упрощающие приемы — партонные приемы. Фейнман взмахивал своей волшебной палочкой, и все вопросы внезапно снимались. Причем самое забавное, что старые методы основывались на его же фейнмановских диаграммах!

Но лучшей частью лекции был момент, когда Ли Чжэндао прервал ее вопросом, или, правильнее сказать, сделал утверждение, замаскированное под вопрос. Фейнман говорил, что некоторые типы диаграмм никогда не встречаются в его новом методе и это все упрощает. Они назывались Z-диаграммами. Ли спросил: «Не правда ли, в некоторых теориях с векторными и спинорными полями Z-диаграммы не всегда дают ноль? Но я надеюсь, что это, вероятно, можно исправить». В зале стало тихо, как в склепе. Фейнман посмотрел на гуру секунд пять, а затем сказал: «Исправьте!» И продолжил лекцию.

После лекции Фейнман подошел ко мне и спросил: «Л как ваше имя?» Он сказал, что подумал над моим вопросом и хотел бы о нем поговорить, и не знаю ли я место, где можно было бы встретиться вечером. Так мы оказались в кафе «Уэст Энд».

Мы еще вернемся в кафе, но прежде я должен еще кое-что рассказать вам о гравитации и квантовой механике.

Вопрос, который я хотел обсудить, относился к влиянию квантовой механики на черные дыры. Общая теория относительности — это классическая теория гравитации. Когда физик использует слово «классический», он не подразумевает, что это связано с Древней Грецией. Это лишь означает, что теория не учитывает эффекты квантовой механики. В том, как квантовая теория влияет на гравитационное поле, очень много непонятного, но то немногое, что известно, связано с небольшими возмущениями, которые распространяются сквозь пространство в виде гравитационных волн. Фейнману мы обязаны большей частью того, что знаем относительно квантовой теории этих возмущений.

В главе 4 мы узнали, что Бог, по-видимому, проигнорировал мнение Эйнштейна относительно игры в кости. Суть в том, что вещи, четко определенные в классической физике, в квантовой становятся неопределенными. Квантовая механика никогда не говорит нам, что случится; она дает нам вероятности того, что случится это или то. Когда именно распадется радиоактивный атом, непредсказуемо, но квантовая механика может сказать нам, что он, вероятно, распадется в ближайшие десять секунд.

Нобелевский лауреат по физике Мюррей Гелл-Манн позаимствовал лозунг из книги «Король былого и грядущего» Т. Уайта[60]: «Все, что не запрещено, — обязательно». В частности, в классической физике множество событий просто не могут случиться. В большинстве случаев, однако, эти события возможны в квантовой теории. Вместо того чтобы быть невозможными, эти события просто крайне маловероятны. Но, несмотря на их невероятность, если подождать достаточно долго, они в конце концов произойдут. Так что все незапрещенное обязательно.

Хорошим примером этого служит явление, называемое туннелированием. Представьте себе автомобиль, припаркованный на холме со впадиной на нем.

Пренебрежем всем, что не относится к делу, вроде трения или сопротивления воздуха. Предположим также, что водитель забыл поставить машину на ручной тормоз, так что она может свободно катиться. Ясно, что, если автомобиль стоит внизу впадины, он сам собой не начнет двигаться. Смещение в любую сторону приведет к подъему по склону, и если автомобиль изначально покоился, у него не будет энергии, чтобы двигаться вверх. Если позднее мы обнаружим этот автомобиль скатывающимся с холма за возвышением, следует предположить, что либо кто-то вытолкнул его, либо он получил откуда-то энергию, чтобы тем или иным способом перевалить через бугор. Спонтанное пер впрыгивание через возвышенность в классической механике невозможно.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики i_067.jpg

Но помните: все, что не запрещено, — обязательно. Если бы автомобиль был квантово-механическим (а таковы на самом деле все автомобили), ничто не мешало бы ему внезапно появиться с другой стороны бугра. Это может быть крайне маловероятно, — для большого тяжелого объекта вроде автомобиля это очень, очень маловероятно, — но это не невозможно. Так что за достаточно большое время это обязательно случится. Если подождать достаточно долго, то мы обнаружим автомобиль скатывающимся вниз с другой стороны от возвышения. Это явление называется туннелированием, поскольку оно выглядит так, будто автомобиль прошел по туннелю под бугром.

Для столь массивного объекта, как автомобиль, вероятность туннелирования так мала, что потребуется невообразимое время (в среднем), чтобы он спонтанно оказался с другой стороны пригорка. Для записи числа, достаточно большого, чтобы выразить это время, потребуется так много цифр, что даже если каждая из них будет не больше протона, они, при плотной упаковке, с большим Избытком заполнят всю Вселенную. Однако тот же самый эффект Может позволить альфа-частице (два протона и два нейтрона) туннелировать из атомного ядра или электрону туннелировать через разрыв в электрической цепи.

В 1972 году я воображал, что, хотя классическая черная дыра имеет строго определенную форму, квантовые флуктуации могут заставить ее горизонт подрагивать. По идее, форма невращающейся черной дыры — это идеальная сфера, но квантовые флуктуации должны быть способны на короткое время деформировать ее, придавая сплюснутый или вытянутый вид. Более того, иногда флуктуации могут быть столь велики, что черная дыра почти превращается в пару сфер меньшего размера, соединенных тонкой перемычкой. Из этого состояния ей легко разделиться. Тяжелые атомные ядра спонтанно распадаются подобным образом, почему бы такому не случиться с черной дырой? В классике этого не может случиться, так же как автомобиль не может спонтанно перепрыгнуть через барьер. Но запрещено ли это абсолютно? Я не видел тому никаких причин. Подождите достаточно долго, рассуждал я, и черная дыра должна разделиться на две дыры поменьше.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики i_068.jpg

Мое представление о распаде черной дыры

Теперь вернемся в кафе «Уэст Энд». Заказав пиво, я ждал Фейнмана около получаса. Чем больше я думал, тем осмысленнее все это мне казалось. Черная дыра может распасться путем квантового туннелирования сначала на две части, затем на четыре, восемь и, в конце концов, на огромное число микроскопических частей. В свете квантовой механики было бессмысленно верить в вечность черных дыр.

вернуться

60

Тетралогия «Король былого и грядущего» английского писателя Теренса Хэнбери Уайта (1906–1964) — это воссозданная на основе британских легенд авторская интерпретация истории короля Артура, его учителя, волшебника Мерлина, рыцарей круглого стола. — Примем, перев.