Изменить стиль страницы

Самые поразительные эксперименты те, которые переворачивают всеми поддерживаемые убеждения. Некоторые убеждения настолько врезались в наше мышление, что они отражены в нашем языке. Например, мы говорим о физических константах, чтобы обозначить те числа, которые никогда не изменяются. Сюда включается большинство основных параметров законов физики, таких как скорость света или заряд электрона. Но являются ли эти константы на самом деле постоянными? Почему не могло бы быть, что скорость света изменяется во времени? И можно ли было бы измерить такое изменение?

В теории мультивселенной, обсуждавшейся в главе 11, мы представляли параметры, изменяющиеся по широкому диапазону различных вселенных. Но как мы можем наблюдать такие вариации в нашей собственной вселенной? Могли бы константы, такие как скорость света, изменяться со временем в нашей вселенной? Некоторые физики указывали, что скорость света измеряется в некоторой системе единиц — то есть, столько-то километров в секунду. Как, они утверждали, вы можете различить изменение скорости света со временем в ситуации, в которой сами единицы изменяются со временем?

Чтобы ответить на этот вопрос, нам нужно узнать, как определяются единицы расстояния и времени. Эти единицы основываются на некоторых физических стандартах, которые определяются в терминах поведения некоторых физических систем. Сначала стандарты ссылались на Землю: метр был одной миллионной долей расстояния от Северного полюса до экватора. Теперь стандарты базируются на свойствах атомов — например, секунда определяется в терминах колебаний атома цезия.

Если вы приняли во внимание, как определяются единицы, тогда физические константы определяются через соотношения. Например, скорость света может быть определена, если вы знаете отношение между временем, которое требуется свету, чтобы пересечь атом, и периодом света, который испускает атом. Эти виды отношений являются одними и теми же во всех системах единиц. Отношение ссылается чисто на физические свойства атомов; в его измерении не содержится решения по поводу выбора единиц. Поскольку отношения определяются в терминах одних только физических свойств, имеет смысл спросить, изменяются ли эти отношения во времени, или нет. Если изменяются, то тогда во времени изменяются и взаимоотношения между одними физическими свойствами атома и другими.

Изменения в этих отношениях могли бы быть измеримы через изменения в частотах света, испускаемого атомами. Атомы испускают свет в спектре, состоящем из многих дискретных частот, так что имеется множество отношений, определённых парами этих частот. Можно спросить, не отличаются ли эти отношения в свете от удалённых звёзд и галактик — то есть, в свете, который имеет возраст в миллиарды лет.

Эксперименты такого рода не смогли обнаружить изменения в константах природы внутри нашей галактики или среди близлежащих галактик. На масштабе времени в миллионы лет, таким образом, константы не изменяются никаким обнаружимым образом. Но непрерывно продолжающийся эксперимент группы из Австралии нашёл изменения в отношениях, рассматривая свет от квазаров — свет, который был излучён примерно 10 миллиардов лет назад. Австралийские учёные не изучали атомные спектры самих квазаров; то, что они делали, более остроумно. На пути от квазара до нас свет путешествовал через многие галактики. Каждый раз, когда он проходил через галактику, некоторое количество света поглощалось атомами этой галактики. Атом поглощают свет на особых частотах, но из-за эффекта Допплера частота, на которой свет был поглощён, сдвинута в направлении красного конца спектра на величину, пропорциональную расстоянию от галактики до нас. В результате спектр света от квазара был декорирован лесом линий, каждая из которых соответствовала свету, поглощённому галактикой на определённом расстоянии от нас. Изучая отношения частот этих линий, мы можем поискать изменения в фундаментальных константах за время, в течение которого свет путешествовал от квазара. Поскольку изменения должны проявиться как отношения частот и имеется несколько фундаментальных констант, физики взялись за изучение простейшего отношения — постоянной тонкой структуры, которая составлена из констант, определяющих свойства атома. Её называют альфа, и она равна квадрату заряда электрона, делённому на скорость света и на постоянную Планка.

Австралийцы изучили измерения света от восьмидесяти экземпляров квазаров, используя очень точные измерения, полученные телескопом Кека (Keck) на Гавайях. Они вывели из своих данных, что около 10 миллиардов лет назад альфа была меньше примерно на 1 часть из 10 000.[8]

Это малое изменение, но если оно поддержится, это будет весомое открытие, самое важное за десятилетия. Это мог бы быть первый раз, когда было обнаружено, что фундаментальная константа природы меняется во времени.

Многие астрономы, которых я знаю, держат разум открытым. По всем оценкам данные были собраны и проанализированы экстремально тщательно. Никто не нашёл очевидных изъянов в методе или результатах австралийской команды, но сам эксперимент очень тонкий, привлечённые для него точности измерений находятся на пределе возможного, и мы не можем исключить вероятности, что некоторая ошибка проскользнула в анализ. Как следует из написанного, ситуация шаткая, что типично для новых экспериментальных технологий. Другие группы пытаются провести те же измерения, и результаты дискуссионны.[9]

Многие теоретики скептически настроены к свидетельствам изменений в постоянной тонкой структуры. Они беспокоятся, что такое изменение будет чрезмерно неестественным, так как оно могло бы ввести в теорию электронов, ядер и атомов временную шкалу больших порядков величины, удалённую от шкал атомной физики. Конечно, речь могла бы идти о масштабе космологической константы. Фактически, масштаб, при котором постоянная тонкой структуры изменяется, не связан ни с чем другим, что было измерено, за исключением самой космологической константы. Так что, возможно, это другое загадочное явление, которое должно иметь дело с масштабом R.

Ещё другим проявлением масштаба R могут быть загадочные массы нейтрино. Вы можете конвертировать масштаб R к масштабу масс, используя только фундаментальные константы физики, и итог будет того же порядка величины, как и разницы между массами различных видов нейтрино. Никто не знает, почему нейтрино, легчайшие из частиц, должны иметь массы, связанные с R, но это так — другая мучительная подсказка.

Могла бы быть финальная экспериментальная подсказка, содержащая масштаб R. Объединяя его с ньютоновской гравитационнной константой, мы можем заключить, что могли бы быть эффекты, изменяющие гравитационную силу на масштабе миллиметров. В настоящее время группой в Университете Вашингтона, возглавляемой Эриком Адельбергером, проводятся ультраточные измерения силы гравитации между двумя объектами, которые разделены миллиметрами. На июнь 2006 всё, что они могли сказать публично, это что они не обнаружили свидетельств, что законы Ньютона нарушаются на масштабах 6/100 миллиметра.

По крайней мере, наши эксперименты должны определённо проверять фундаментальные принципы физики. Имеется великая склонность думать, что эти принципы, будучи раз открытыми, являются вечными, пока что история говорит о другом. Почти каждый принцип, раз объявленный, занял чьё-то место. Не важно, насколько они полезны, или насколько хороши приближения, которые они дают для явлений, раньше или позже большинство принципов падёт, как только эксперимент прозондирует естественный мир более точно. Платон объявил, что всё в небесных сферах движется по окружностям. Для этого имелись веские причины: всё выше сферы Луны, верилось, является вечным и совершенным. А нет движения более совершенного, чем однородное движение по окружности. Птолемей принял этот принцип и расширил его, сконструировав эпициклы — окружности, двигающиеся по окружностям.

Орбиты планет и в самом деле очень близки к круговым, а движение планет по их орбитам является почти однородным. Как-то всё было подогнано, что последняя круговая планетарная орбита принадлежала непокорному Марсу — и его орбита была столь близка к круговой, что отклонения были на пределе того, что можно было бы вывести из лучших наблюдений невооружённым глазом. В 1609 после девяти лет усердной работы над марсианской орбитой Иоганн Кеплер понял, что это должен быть эллипс. В этот год Галилей направил телескоп в небо и начал новую эру астрономии, в которой со временем стало ясно, что Кеплер был прав. Окружности являются самыми совершенными формами, но планетарные орбиты не круговые.