– • • • —
Физики продолжают шутить i_48.jpg

– Ну, кажется, мы на пороге великого открытия.

• • •

Бор с женой и молодым голландским физиком Казимиром возвращались поздним вечером из гостей. Казимир был завзятым альпинистом и с увлечением рассказывал о скалолазании, а затем предложил продемонстрировать своё мастерство, избрав для этого стену дома, мимо которого вся компания в тот момент проходила. Когда он, цепляясь за выступы стены, поднялся уже выше второго этажа, за ним, раззадорившись, двинулся и Бор. Маргарита Бор с тревогой наблюдала за ними с низу. В это время послышались свистки и к дому подбежало несколько полицейских. Здание оказалось отделением банка.

• • •

Посетив Гёттинген, Бор пригласил двадцатипятилетнего Гейзенберга на работу в Копенгаген. На следующий день во время обеда в честь Бора к нему подошли два полицейских и, предъявив обвинение «в похищении несовершеннолетних», арестовали его. Это были переодетые студенты университета.

Ключ к системе ключей

(Длинное письмо в редакцию)

Paнеё было высказано мнение, что система дверных ключей в нашем институте сложнее, чем теория поля. Это явное извращение фактов, и чтобы его опровергнуть, в настоящем сообщении мы излагаем упрощённую теоретическую схему, на основе которой создавалась эта система.

Начнём с определений.

Ключ состоит из стержня , на котором укреплены штифты .

Физики продолжают шутить i_49.jpg

Замок состоит из щели с отверстиями , расположенными соответственно позициям штифтов на стержне ключа. Кроме того, в замке имеется система рычажков , находящихся позади отверстий (см. рисунок).

Введём теперь следующие три аксиомы:

1. Штифты поворачивают рычажки; для того чтобы замок открылся, все рычажки в замке должны быть повёрнуты.

2. Если в данной позиции нет штифта, отверстия или рычажка, мы будем говорить в дальнейшем о наличии в данной позиции антиштифта, антиотверстия или антирычажка соответственно.

3. Ни в одном замке нет рычажков за антиотверстиями, ибо такой замок нельзя было бы открыть.

Пусть штифты, отверстия и рычажки описываются значением 1 переменных ai , bi и ci соответственно. Индекс i – номер позиции. Антиштифты, антиотверстия и антирычажки соответствуют значению 0 тех же переменных. Определим теперь матричное умножение следующим способом:

Физики продолжают шутить f_3.jpg

где символическое произведение abc = a , если одновременно c ? b и а ? с , в противном случае abc = 1 – a . Отсюда следует, что если (a1, a2…ak ) есть собственный вектор оператора

Физики продолжают шутить f_4.jpg

то ключ может отпереть замок.

Используя этот формализм, легко найти полное число ключей, которые открывают данный замок (b/c) . Оно равно

Физики продолжают шутить f_5.jpg

а число замков, которые могут быть открыты данным ключом (а) , равно

Физики продолжают шутить f_6.jpg

При получении этих выражений учитывался тот факт, что замок (0/0) есть тривиальный антизамок. В уравнениях (2) и (3) k есть сумма коэффициентов Клебша-Гордана, равная единице.

Развитый выше формализм позволил решить следующую задачу. Пусть некто хочет пройти из некоторой комнаты A через несколько дверей в произвольную комнату B . Число ключей, необходимое для этого, максимизировалось при произвольном выборе комнат A и B . (Проблема минимизации не решалась, поскольку её решение тривиально – одинаковые замки.) Затем сотрудники института были разбиты на ряд подгрупп, и система ключей строилась таким образом, чтобы одновременно выполнялись два условия:

1) ни одна подгруппа не в состоянии открыть все те замки, которые могут быть открыты любой другой подгруппой;

2) трансформационные свойства групп соответствуют возможности одалживания ключей.

Создатели системы ключей надеялись, что она является единственно возможной и полной, и до известной степени это справедливо. Однако оказалось, что ключи, которые не должны были бы открывать некоторые двери, открывают их, если их вставлять в замок не до конца. Например, ключ (11111) может открыть замок (10000/11111) в = 5 различных положениях. Число n было названо странностью системы ключ – замок. Экспериментальными исследованиями было найдено, что наша система ключей является весьма странной. Однако этот недостаток можно исправить, если потребовать для последней позиции соблюдения равенств ak = bk = ck = 1 . Будем надеяться, что при ближайшем пересмотре системы ключей в неё будет внесено это исправление.

На отмычки настоящее исследование не распространяется.

Автор выражает благодарность сотрудникам, работающим в разных группах, за горячее обсуждение затронутых проблем.

– • • • —

Нильс Бор любил ходить в кино, причём из всех жанров признавал только один – ковбойские вестерны. Когда Бор по вечерам начинал жаловаться на усталость и рассеяность и говорил, что «надо что-то предпринять», все его ученики знали, что лучший способ развлечь профессора – сводить его на что-нибудь вроле «Одинокого всадника» или «Схватки в заброшенном ранчо». После одного из таких просмотров, когда по дороге домой все подсмеивались над непременной и избитой ситуацией – герой всегда хватается за револьвер последним, но успевает выстрелить первым, – Бор неожиданно стал утверждать, что так на самом деле и должно быть. Он развил теорию, согласно которой злодей, собирающийся напасть первым, должен сознательно выбрать момент, когда начать движение, и это замедляет его действия, тогда как реакция героя – акт чисто рефлекторный, и потому он действует быстрее. С бором никто не соглашался, разгорелся спор. Чтобы разрешить его, послали в лавку за парой игрушечных ковбойских револьверов. В последовавшей серии «дуэлей» Бор, выступая в роли положительного героя, «перестрелял» всех своих молодых соперников!

Трудно себе представить, что привлекало Бора в этих картинах. «Я вполне могу допустить, – говорил он, – что хорошенькая героиня, спасаясь бегством, может оказаться на извилистой горной тропе. Менее вероятно, но всё же возможно, что мост над пропастью рухнет как раз в тот момент, когда она на него наступит. Исключительно маловероятно, что в последний момент она схватится за былинку и повиснет над пропастью, но даже с такой возможностью я могу согласиться. Совсем уж трудно, но всё-таки можно поверить в то, что красавец ковбой как раз в это время будет проезжать мимо и выручит несчастную. Но чтобы в этот момент тут же оказался оператор с камерой, готовый заснять все эти волнующие события на плёнку, – уж этому, увольте, я не поверю!»