ВЛАДИМИР АЛЕКСАНДРОВИЧ ЭНГЕЛЬГАРДТ. (1894-1984)
В.А. Энгельгардт — выдающийся биолог и общественный деятель, академик-секретарь по биологическим наукам АН СССР, возглавлял созданный в 1959 году Институт молекулярной биологии АН СССР. Он был членом бюро Международного совета научных союзов, принимал деятельное участие в Пагуошском движении. Научно-исследовательская деятельность Энгельгардта имела принципиальное значение для развития динамической и функциональной биохимии, для формирования молекулярной биологии. Его труды способствовали радикальному изменению канонов биологического мышления, преобразованию способов экспериментального исследования, освоению биологией физических и химических подходов. Особое внимание уделял мировоззренческим и методологическим проблемам биологии. Определяя место этой науки в современном естествознании, он обратился к анализу сущностных основ жизни. Ее атрибутами Энгельгардт считал: иерархию, интеграцию, «узнавание»; биологические объекты он рассматривал как открытые системы, обменивающиеся веществом, энергией и информацией с окружающей средой. Особое значение он придавал философскому осмыслению содержания молекулярной биологии, определению ее статуса, мировоззренческого значения и роли в познании жизни. Под таким углом зрения Энгельгардт анализировал систему способов биологического познания. Признавая значение редукционистской методологии, он вместе с тем подчеркивал важность интегратизма как методологического подхода, предполагающего восхождение познания от молекулярного уровня биологических систем к более сложным уровням, и одновременно как целенаправленного изучения факторов, определяющих усложнение биосистем в реальных условиях.
О.С. Суворова
Приводятся фрагменты из книги:
Энгельгардт В.А. Познание явлений жизни. М., 1984.
Веками и тысячелетиями загадка жизни оставалась прибежищем метафизики, областью верования, а не знания. Понятие жизни неразрывно связывалось с понятием души, с представлениями об особой нематериальной «жизненной силе», с энтелехией Дриша, «жизненным порывом» Бергсона и т.д. Суть всех этих учений состоит в утверждении, что живые существа и жизненные процессы не могут быть объяснены в понятиях специальных научных дисциплин (физики, химии и др.), в согласии с научными представлениями каузальных зависимостей. (С. 184)
<...> вырисовываются ли уже контуры ответа на самый коренной вопрос: что такое жизнь?
Приходится признать, что дать на поставленный вопрос ответ, который полностью отвечал бы предъявляемым к нему требованиям, еще не представляется возможным. Более того, в настоящее время наука не располагает точным, неоспоримым ответом на, казалось бы, значительно более простой вопрос: по какому признаку определить, является ли данный объект живым или неживым? (С. 184)
Итак, на всех уровнях биологической организации — от уровня нуклеопротеида, каковым может являться вирус, и до уровня человеческого организма — мы неизменно сталкиваемся с невозможностью однозначно провести границу между живым и неживым. Мы сталкиваемся с цепью градаций, неуловимо приближающейся к некоторому пределу, подлинная граница которого не поддается фиксированию. Отсюда понятно, что громадные трудности возникают при попытке дать безупречный ответ на вопрос: что такое жизнь? (С. 186)
Жизнь качественно превосходит нижележащие формы существования материи в различных аспектах. Прежде всего в отношении состава и строения живых объектов, многообразия живых компонентов и сложности специфичных для них химических соединений. То же справедливо и в отношении динамики, т е. многообразия и быстроты превращения материи. Те уровни, которые характеризуют живые системы, на многие порядки превышают наблюдаемые в неживом мире.
Однако, как ни важны приведенные признаки, гораздо большее значение имеет начало упорядоченности как наиважнейшее качество всего живого. <...> Именно в способности живого создавать порядок из хаотического теплового движения молекул состоит наиболее глубокое, коренное отличие живого от неживого. Тенденция к упорядочению, к созданию порядка из хаоса есть не что иное, как противодействие возрастанию энтропии.
Отсюда следует вывод первостепенной важности: живые объекты должны представлять собой открытые системы, т.е. быть способными взаимодействовать с окружающей средой, обмениваясь с ней энергией. Именно в силу этого функционирование живых организмов не нарушает термодинамического принципа возрастания энтропии: локальное уменьшение энтропии, возникающее в изолированно взятом объекте, сопровождается ее возрастанием в системе живой объект-среда, и, следовательно, никакого нарушения второго начала термодинамики не происходит.
То новое, что внесено в познание сущности жизни современной наукой, состоит в огромном углублении и расширении сведений об элементарных основах тех первичных механизмов, которые обеспечивают осуществление важнейших проявлений жизнедеятельности. Речь идет о тех свойствах живого, которые издавна стояли в числе главнейших атрибутов жизни (размножение, явление наследственности, обмен веществ, движение, трансформация энергии и т.д ). (С. 186-187)
Еще более определенно этот качественный сдвиг проявился в обнаружении новых, неизвестных ранее феноменов, которые, бесспорно, представляют собой важнейшие атрибуты жизни. Они лежат в самой основе ряда важнейших биологических функций и свойственны только живым системам. К ним относятся некоторые черты химического состава, новые принципы процесса биосинтеза макромолекул, молекулярные механизмы регуляции в живых системах, основы биологической информации.
Необходимо подчеркнуть, что познание новых типических черт живого стало возможным благодаря решающему вторжению точных наук — физики, химии, кристаллографии и других — в сферу биологических проблем. Этому сопутствовало то обстоятельство, что в обиход экспериментальнобиологического исследования были введены объекты предельно простого характера, стоящие на самом рубеже живого и неживого мира, такие, как вирусы или системы, достигающие подлинно молекулярного уровня.
В результате мощного взаимного усиления тесно переплетающихся линий исследования в огромной степени возрос фронт аналитического изучения коренных явлений жизни, рука об руку с которым шло развитие синтетических, интегративных концепций. В короткий срок, на протяжении полутора-двух десятилетий, возникла новая наука — молекулярная биология, которая и произвела подлинную революцию во многих важнейших областях биологии. (С. 188)
Мы можем сказать, что жизнь представляет собой совокупность некоторого числа начал, из которых каждое, взятое в отдельности, недостаточно для того, чтобы обеспечить функционирование живой системы, но при отсутствии хотя бы одного из них эта система разрушается. Одним из таких начал является структурная организация. Мы не можем представить себе, чтобы жизнь имела место в бесструктурной среде, не содержащей элементов определенной, в какой-то мере фиксированной, материальной упорядоченности. Далее, в основе жизни лежит сочетание трех потоков: потока вещества, потока энергии и потока информации. Они качественно глубоко различны, но сливаются в некое единство высшего порядка, которое можно было бы охарактеризовать как «биотическое триединство», составляющее динамическую основу жизни. (С. 189)
Открытие принципа матричного синтеза — один из крупнейших успехов современного естествознания, ибо он дал конкретное истолкование одного из коренных атрибутов жизни на уровне молекулярной структуры. <...>(С. 191)
В матричном синтезе сливаются между собой поток материи и поток информации, первый — в форме синтеза важнейших составных частей субстанции живых систем, белков и нуклеиновых кислот, а второй — в форме фиксирования определенных указаний в химической структуре макромолекул нуклеиновых кислот. В принципе матричного синтеза фундаментальное свойство живого — воспроизведение себе подобного — получает интерпретацию в терминах химических понятий на подлинно молекулярном уровне. Природой здесь решена задача, имеющая ключевое значение для всей проблемы жизни: создание гигантских молекул, без которых невозможна жизнь, содержащих тысячи и до сотен тысяч отдельных звеньев при сохранении с предельной точностью порядка взаимного расположения и чередования этих звеньев. (С. 191-192)