Изменить стиль страницы

Экспериментальное обнаружение предсказанных теорией черных микродыр, их излучения и взрывов явилось бы важным аргументом в пользу гипотезы фридмонов. Микроскопические черные дыры, как мы уже говорили, ведут себя в пространстве подобно ярко искрящимся бенгальским свечам, а их взрывы дают мощные импульсы электромагнитных и корпускулярных излучений. По этим признакам их и пытаются обнаружить. И действительно, и астрономы с Земли и автоматические станции (например, «Венера») не раз фиксировали всплески интенсивного гамма-излучения. Однако утверждать, что это сигналы о взрывах черных дыр, нельзя. Их можно объяснить и другими причинами, например взрывами нейтронных звезд. Никаких экспериментальных данных о существовании в доступном нам космическом пространстве микроскопических черных дыр, к сожалению, пока нет.

Вот с большими черными дырами дело обстоит гораздо лучше. Хотя они и невидимки, их присутствие можно обнаружить по действию их сильного гравитационного поля на окружающие тела — на расположенные вблизи звезды или на облака космической пыли. Астрофизикам известно несколько объектов, которые могут быть черными дырами. Прежде всего это компактный по величине и очень тяжелый источник рентгеновских лучей в созвездии Лебедя. Многое говорит за то, что эти лучи испускает засасываемое дырой плазменное вещество звезды-соседки.

А недавно в центре одной галактики (астрономы называют ее объектом М-87) замечено темное образование с массой, в несколько миллиардов раз большей, чем у Солнца, и с чрезвычайно высокой плотностью — приблизительно в 100 триллионов раз плотнее свинца. Ближайшие окрестности этого необычного тела излучают энергию как 100 миллионов Солнц! Впечатление такое, что там происходит гравитационный коллапс: вещество галактики М-87 втягивается в черную дыру.

Есть еще несколько кандидатов в черные дыры, на-пример рентгеновский источник в Большом Магеллановом облаке, на расстоянии 180 тысяч световых лет от нас. Он, пожалуй, самый яркий из всех известных. Его интенсивность непрерывно изменяется, временами резко возрастает в 10—20 раз. Считается, что такие непостоянные источники являются двойными, спаренными системами, состоящими из нормальной звезды и какого-то невидимого компактного объекта — тяжелой нейтронной звезды или черной дыры. Вполне допустимо, что в Магеллановом облаке таким компактным объектом действительно является черная дыра. Некоторые астрофизики убеждены в том, что даже в центре нашей собственной Галактики — Млечного Пути — должна быть одна или даже несколько массивных черных дыр.

Достоверное обнаружение больших черных дыр существенно повысило бы доверие к гипотезе фридмонов. Ведь если есть большие дыры в космосе, то возможны и маленькие. К сожалению, нет пока ни одного объекта, о котором можно было бы с абсолютной уверенностью сказать: да, это черная дыра. Энтузиасты выдвигают аргументы, скептики же, которых, как всегда, не меньше, чем энтузиастов, — контраргументы. И это, без сомнения, очень хорошо. В науке скептики играют важную роль, предохраняя ее от поспешных выводов, от ошибок. Оценка достоверности наблюдения всегда субъективна. Хорошо, если доводы «за» или «против» резко перевешивают, тогда вероятность ошибки невелика. Но вот когда и «за» и «против» почти уравновешены, ошибиться очень легко: очень многие ученые склонны чуть-чуть преувеличивать весомость тех аргументов, которые подтверждают их позицию. Желаемое выдается за действительное, и мы сталкиваемся с сенсацией, за которой, увы, не кроется ничего, кроме эмоций. Можно ли осуждать за это тех, чей дар убеждать оказывается сильнее? Нет, конечно: каждый человек ищет подтверждения своим идеям, и мало кто старается выискать опровержения. Люди есть люди.

Выдающийся ученый, как правило, обладает способностью, умением правильно оценивать относительный вес каждого из множества разнородных факторов. Но это такой же природный дар, как склонность к живописи или музыке. Можно быть исключительно изобретательным человеком, подлинным генератором идей, но каждый раз спотыкаться на их оценке. Бывают и такие.

Вот тут-то и требуется, настоятельно требуется скептик! Сомнение — один из главных двигателей науки.

Теория обладает замечательным свойством: в ней часто содержится много такого, чего никак не ожидали увидеть даже ее создатели. Так получилось и с черными дырами. Сегодня доводов в пользу существования этих удивительных объектов больше, чем против. То же и с фридмонами или почти то же. Уж очень просто и естественно в рамках современной теории возникают космические объекты с микроскопическими свойствами! И это вселяет надежду на то, что в один прекрасный день фридмоны будут обнаружены в эксперименте. Как подчеркивает академик М.А. Марков, первый исследовавший эти замечательные объекты, исключительная привлекательность гипотезы фридмонов состоит в том, что она позволяет достичь единого подхода к элементарным частицам и к грандиозным космическим объектам, вплоть до строения всей Вселенной. Физика элементарных частиц тесно переплетается с космологией, а привычное для нас разделение окружающего на микромир и макромир теряет абсолютное значение и сохраняет, смысл лишь в определенных границах.

ГЛАВА СЕДЬМАЯ,

в которой читатель знакомится с историей открытия античастиц и узнает о том, как в пекле первичного взрыва «сварилось» вещество нашего мира и куда девался антимир

Кварки, протоны, Вселенная image8.png

В своих лабораториях физики уже давно научились создавать частицы антивещества. Но вот в окружающей нас природе мы почему-то не встречаем тел из антивещества. Может быть, они сосредоточены где-то далеко в космосе и нам еще только предстоит их открыть? Или же существуют какие-то физические законы, в силу которых Вселенная обязана быть только из вещества? Или, наоборот, из антивещества, которое нам, естественно, кажется веществом?

История открытия антивещества связана с электроном. С ним люди знакомы уже почти 100 лет. Он был первой элементарной частицей, открытой физиками. Электроны входят в состав всех атомов, потоки электронов работают в радиолампах. Каждый вечер они высвечивают изображения на экранах наших телевизоров. Именно электроны когда-то первыми упорно не желали подчиняться трем знаменитым законам Ньютона. Во многих случаях их движение походило скорее на распространение волн, чем на движение корпускул. Подобно волнам, пучки электронов огибали препятствия, отражались и интерферировали между собой.

Для описания этих явлений пришлось создать совершенно новую науку — квантовую механику.

Молодой английский теоретик Поль Дирак попытался объединить только что созданную квантовую механику с теорией относительности. Ведь электроны могут двигаться очень быстро, почти со скоростью света, когда масса частицы начинает заметно зависеть от ее скорости. В этом случае без теории относительности уже не обойтись. И вот оказалось, что уравнение, описывающее движение электрона, имеет два решения. Одно из них соответствовало обычной частице с положительной энергией, а другое — частице с отрицательной энергией и массой.

Сначала Дирак просто отбросил это решение, подобно тому как мы отбрасываем отрицательное, «нефизическое» решение квадратного уравнения, когда в ответе получается, например, что число землекопов равно ± 2. Однако положительное и отрицательное решения оказались тесно связанными между собой. Получалось так, что при определенных условиях частицы с отрицательной энергией могут возникать из частиц с положительной энергией, и наоборот. Нельзя было отбросить ни одно из решений, не разрушив всей картины.

Можно было, конечно, вообще отказаться от уравнения с такими странными свойствами и искать другой путь построения теории. Вероятно, многие на месте Дирака так бы и поступили. Но Дирак принадлежал к ученым, которые убеждены, что если удалось найти достаточно простое и симметричное по форме обобщение теории («красивое», как говорят физики), то, скорее всего, оно отражает какие-то важные физические закономерности и поэтому должно соответствовать явлениям природы. А если это не так, то и для этого должны быть глубокие основания, нередко опять-таки связанные с какими-то еще нам не известными физическими принципами.