Изменить стиль страницы

Так в чем же здесь дело? Еще не поставлен нужный опыт? Или, может быть, элементарную частицу просто нельзя разделить на кварки, как, например, нельзя разделить магнит на два несвязанных магнитных заряда — северный и южный? В детстве, наверное, каждый из нас не однажды проделывал такой опыт и убеждался, что все равно получаются два магнита и каждый с двумя полюсами.

Как и всякая заряженная частица, проходящая сквозь вещество, кварк взаимодействует с атомарными электронами. Их орбиты в удаленных атомах искажаются, а те электроны, которые находятся вблизи траектории кварка, срываются его электрическим полем, и атомы превращаются в заряженные ионы. Чем больше заряд частицы, тем большим числом поврежденных атомов усеян ее путь в веществе. Это свойство и используется в большинстве опытов по поиску кварков: ведь их электрические заряды отличаются от зарядов всех других частиц. Если заряд электрона принять за единицу, то заряд кварка, как мы уже говорили, будет дробным: у одного он скажется равным двум третям, у двух других — одной трети. Дробные заряды имеют также «прелестный» и «очарованный» члены кваркового мультиплета. Сравнивая плотность цепочки образовавшихся ионов с ионными следами известных частиц, можно определить заряд пролетевшей сквозь вещество частицы. Правда, плотность ионного следа зависит и от других параметров частицы — от ее массы и скорости, но их влияние можно учесть, вводя необходимые поправки. Прохождение заряженных частиц сквозь вещество хорошо изучено, и поправки вносятся с высокой точностью.

В отличие от нейтральных атомов ионы очень активны. Они служат центрами конденсации в среде, состоящей из пересыщенного пара, затравочными неоднородностями, вокруг которых мгновенно образуются пузырьки газа в перегретой, готовой закипеть жидкости. И в химическом отношении ионы активнее атомов: поэтому если облученное вещество обработать соответствующим составом-проявителем, траектории частиц станут видимыми и тем отчетливее, чем больше их электрический заряд.

В помещениях с повышенной радиоактивностью частицы оставляют свои «автографы» на фотопленке: метод фотоэмульсий — тщательно отработанный и хорошо себя зарекомендовавший метод наблюдения за невидимыми частицами. Дополнительные возможности наблюдать за ними дает магнитное поле. Оно изгибает траектории проходящих сквозь вещество заряженных частиц. Величина изгиба зависит от абсолютного значения заряда частицы, а его направление (влево она изгибается или вправо) — от знака заряда.

Словом, в распоряжении физиков немало способов сделать следы заряженных невидимок видимыми. Hо годятся ли они для поиска кварков? За последние 20 лет в разных странах проведено огромное количество опытов по поиску кварков. Частицы с дробными зарядами искали среди мезонов, рождающихся при аннигиляции протонов с антипротонами, в струях вторичных частиц, образуемых в мишенях высокоэнергетическими протонами, во многих других реакциях. Искали в космических лучах и на ускорителях. И конечно, использовали все методы регистрации, какие только изобретены. Но все безрезультатно.

В то же время, как уже было сказано, опыты по «просвечиванию» протонов и нейтронов пучками лептонов (электронов и нейтрино) определенно говорят за то, что эти частицы содержат внутри себя «зерна» с дробными электрическими зарядами и другими свойствами, какие должны быть у кварков. Парадокс!

Может, дело в том, что силы, связывающие кварки и антикварки в элементарных частицах, так велики, что энергии современных ускорителей просто не хватает чтобы их разорвать? Оттого никто и не может увидеть свободных кварков? Предположим, что кварк — тяжелая, массивная частица, но только в свободном, изолированном состоянии, когда он находится вдали от других кварков. При сближении между кварками возникает сильное поле взаимодействия, взаимное притяжение которого нейтрализует, «гасит» большую часть их массы (с ними происходит то же, что и по закону Архимеда с телом, погруженным в ванну, только здесь они погружены в «полевую ванну»). Выбить кварк из «полевой ванны» можно, лишь выстрелив в него очень быстрой частицей, обладающей большой кинетической энергией. Поэтому, если кварки — частицы очень тяжелые, в современных ускорителях их «выковырять» невозможно.

Конечно, есть еще космические лучи, где встречаются частицы, чья энергия в тысячи и даже в миллионы раз превосходит ту, что можно получить в самых мощных ускорителях. Энергии сверхвысокоэнергетических частиц из космоса достаточно, чтобы расколоть самый твердый кварковый «орешек», но таких частиц мало, и опыты с ними не точны. Поэтому, может быть, и не были замечены те редкие случаи, когда космические частицы раскалывали нуклонные «орешки» на кварки. Таким образом, если кварки действительно очень тяжелые частицы, обнаружить их в реакциях расщепления будет неимоверно трудно, почти безнадежно. А строить ради этого фантастически мощные ускорители — дело очень сложное и дорогое.

Можно, однако, совершить обходной маневр и решить задачу иным способом.

Космические частицы сверхвысокой энергии очень редки, зато они падают на нашу планету уже несколько миллиардов лет, и за это время они могли образовать очень много кварков и антикварков. А однажды образовавшись, кварк и. антикварк уже не в состоянии исчезнуть — им некуда спрятать свой дробный заряд. Если кварк (или антикварк — все равно) распадется, то среди его осколков непременно окажутся частицы с дробным зарядом. Ведь электрический заряд сохраняется, и если вначале он был дробным, то и сумма зарядов продуктов распада будет тем же дробным числом. Если кварк будет поглощен какой-либо другой частицей, допустим, одним из нуклонов, то образуется новый объект, но опять-таки с дробным зарядом. От дроби никуда не денешься!

Рожденные космическими лучами кварки и антикварки должны постепенно накапливаться в веществе Земли, Луны и внутри блуждающих в космическом пространстве и изредка падающих на Землю метеоритов.

Конечно, блуждая по свету, кварк рискует столкнуться с антикварком, обладателем противоположного заряда, и тогда может произойти их аннигиляция — превращение в обычные частицы с целочисленными зарядами (если только суммарный заряд в конце и вначале будет равен нулю). Но мы уже знаем, что если кварки и содержатся в окружающем нас веществе, их концентрация там настолько мала, что вероятность встречи кварка с антикварком ничтожна,

Есть еще одна причина, почему окружающее нас вещество может содержать кварки. Это могло случиться на ранней стадии жизни нашей Вселенной, вскоре после Большого взрыва, когда Вселенная была еще сверхплотной, сверхгорячей и из «протовещества» рождались; и «выпадали в осадок» разные частицы, в том числе и кварки.

Тут неискушенный читатель может спросить: о какой ранней стадии жизни Вселенной идет речь, о каком таком Большом взрыве? Автор уже упоминал об этом, а теперь вот говорит снова. Столько лет нас учили, что у Вселенной не было начала и не будет конца, а тут — «ранняя стадия жизни». Может быть, у нее будет и, «поздняя стадия», то есть конец? Просим автора объясниться и рассказать об этих вещах подробнее.

Замечу сразу, что подробных рассказов было уже, немало. Сошлюсь прежде всего на вышедшую недавно в 1986 г., в московском отделении издательства «Наука» популярную книгу «Прошлое и будущее Вселенной», в которой собраны статьи на эту тему, написанные видными специалистами и печатавшиеся в журнале «Природа» в 1979—1985 гг. Сошлюсь и на собственную недавнюю статью «Штрихи раздувающегося мира», которую читатель найдет в № 10 журнала «Наука и религия» за 1986 г. (В том же журнале печатались в свое время обстоятельные обзоры И. Григорьева «После Большого взрыва» (1981, № 2) и «Нейтринная Вселенная» (1982, № 9).)

Тем не менее недоумение читателя должно быть рассеяно немедленно. Поэтому, отсылая его к соответствующей литературе, я, пусть в общих чертах, обрисую положение дел и на этих страницах. Да, представление о том, что у Вселенной нет ни начала, ни конца, очень долго было общепринятым. Однако постепенно накапливались научные данные, которые свидетельствовали о том, что когда-то, много миллиардов лет назад, вся Вселенная была сконцентрирована в очень небольшом, буквально точечном объеме. Представить себе плотность этого сгустка, конечно, трудно. Свойства пространства, времени и вещества тогда были совсем не такими, как теперь. В силу каких-то причин, каких — пока физики еще не разгадали, произошел грандиозной силы взрыв, и Вселенная стала «распухать» — расширяться со скоростью света во все стороны. Это расширение продолжается и по сей день.