Вскоре индукционный двигатель Теслы был значительно переработан и усовершенствован русским электротехником Доливо-Добровольским. Исключенный в 1881 году по политическим мотивам из Рижского политехнического института, Доливо-Добровольский уехал в Германию. Здесь он закончил Дармштадтское высшее техническое училище и с 1887 года начал работу в крупной германской электротехнической фирме АЭГ. Первым важным новшеством, которое внес Доливо-Добровольский в асинхронный двигатель, было создание ротора с обмоткой «в виде беличьей клетки». Во всех ранних моделях асинхронных двигателей роторы были очень неудачными, и поэтому КПД этих моторов был ниже, чем у других типов электрических двигателей. (Феррарис, о котором упоминалось выше, создал асинхронный двухфазный двигатель с КПД порядка 50% и считал это пределом.) Очень большое значение играл здесь материал, из которого изготавливался ротор, поскольку тот должен был удовлетворять сразу двум условиям: иметь малое электрическое сопротивление (чтобы индуцируемые токи могли свободно протекать через его поверхность) и иметь хорошую магнитную проницаемость (чтобы энергия магнитного поля не растрачивалась понапрасну). С точки зрения уменьшения электрического сопротивления лучшим конструктивным решением мог бы стать ротор в виде медного цилиндра. Но медь плохой проводник для магнитного потока статора и КПД такого двигателя был очень низким. Если медный цилиндр заменяли стальным, то магнитный поток резко возрастал, но, поскольку электрическая проводимость стали меньше, чем меди, КПД опять был невысоким. Доливо-Добровольский нашел выход из этого противоречия: он выполнил ротор в виде стального цилиндра (что уменьшало его магнитное сопротивление), а в просверленные по периферии последнего каналы стал закладывать медные стержни (что уменьшало электрическое сопротивление). На лобовых частях ротора эти стержни электрически соединялись друг с другом (замыкались сами на себя). Решение Доливо-Добровольского оказалось наилучшим. После того как он получил в 1889 году патент на свой ротор, его устройство принципиально не менялось вплоть до настоящего времени.
Вслед за тем Доливо-Добровольский стал думать над конструкцией статора неподвижной части двигателя. Конструкция Теслы казалась ему нерациональной. Поскольку КПД электрического двигателя напрямую зависит от того, насколько полно магнитное поле статора используется ротором, то, следовательно, чем больше магнитных линий статора замыкаются на воздух (то есть не проходят через поверхность ротора), тем больше потери электрической энергии и тем меньше КПД. Чтобы этого не происходило, зазор между ротором и статором должен быть как можно меньше. Двигатель Теслы с этой точки зрения был далек от совершенства — выступающие полюса катушек на статоре создавали слишком большой зазор между статором и ротором. Кроме того, в двухфазном двигателе не получалось равномерное движение ротора. Исходя из этого, Доливо-Добровольский видел перед собой две задачи: повысить КПД двигателя и добиться большей равномерности его работы. Первая задача была несложной — достаточно было убрать выступающие полюса электромагнитов и равномерно распределить их обмотки по всей окружности статора, чтобы КПД двигателя сразу увеличилось. Но как разрешить вторую проблему? Неравномерность вращения можно было заметно уменьшить, лишь увеличив число фаз с двух до трех. Но был ли этот путь рациональным? Получить трехфазный ток, как уже говорилось, не представляло большого труда. Построить трехфазный двигатель тоже было нетрудно — для этого достаточно разместить на статоре три катушки вместо двух и каждую из них соединить двумя проводами с соответствующей катушкой генератора. Этот двигатель должен был по всем параметрам быть лучше двухфазного двигателя Теслы, кроме одного момента — он требовал для своего питания шести проводов, вместо четырех. Таким образом, система становилась чрезмерно громоздкой и дорогой. Но, может быть, существовала возможность подключить двигатель к генератору как-нибудь по другому? Доливо-Добровольский проводил бессонные ночи над схемами многофазных цепей. На листах бумаги он набрасывал все новые и новые варианты. И, наконец, решение, совершенно неожиданное и гениальное по своей простоте, было найдено.
Действительно, если сделать ответвления от трех точек кольцевого якоря генератора и соединить их с тремя кольцами, по которым скользят щетки, то при вращении якоря между полюсами на каждой щетке будет индуцироваться один и тот же по величине ток, но со сдвигом во времени, которое необходимо для того, чтобы виток переместился по дуге, соответствующей углу 120 градусов. Иначе говоря, токи в цепи будут сдвинуты относительно друг друга по фазе также на 120 градусов. Но этой системе трехфазного тока оказалось присуще еще одно чрезвычайно любопытное свойство, какого не имела ни одна другая система многофазных токов — в любой произвольно взятый момент времени сумма токов, текущих в одну сторону, равна здесь величине третьего тока, который течет в противоположную сторону, а сумма всех трех токов в любой момент времени равна нулю.
Например, в момент времени t1 ток i2 проходит через положительный максимум, а значения токов i1 и i3, имеющих отрицательное значение, достигают половины максимума и сумма их равна току i2. Это означает, что в любой момент времени один из проводов системы передает в одном направлении такое же количество тока, какое два других вместе передают в противоположном направлении. Следовательно, предоставляется возможность пользоваться каждым из трех проводов в качестве отводящего проводника для двух других, соединенных параллельно, и вместо шести проводов обойтись всего тремя!
Чтобы пояснить этот чрезвычайно важный момент, обратимся к воображаемой схеме. Представим себе, что через круг, вращающийся вокруг своего центра, проходят три соединенных между собой проводника, в которых протекают три переменных тока, сдвинутых по фазе на 120 градусов. При своем вращении каждый проводник находится то на положительной, то на отрицательной части круга, причем при переходе из одной части в другую ток меняет свое направление. Эта система вполне обеспечивает нормальное протекание (циркуляцию) токов. В самом деле, в некоторый момент времени проводники I и II оказываются соединенными параллельно, а III отводит от них ток. Некоторое время спустя II переходит на ту же сторону, где находится III; теперь уже II и III работают параллельно, а I как общий отводящий ток провод. Далее III переходит на ту сторону, где еще находится I; теперь II отводит то количество, что III и I подводят вместе. Затем I переходит на ту сторону, где еще находится II, и т.д.
В приведенном примере ничего не говорилось об источниках тока. Как мы помним, этим источником является трехфазный генератор. Изобразим обмотки генератора в виде трех катушек. Для того чтобы протекание тока происходило описанным нами способом, эти катушки могут быть включены в цепь двояким образом. Мы можем, к примеру, разместить их на трех сторонах треугольника, допустим левого; таким образом, вместо трех его сторон мы получим три катушки I, II и III, в которых индуцируются токи со смещением фаз на 1/3 периода. Мы можем также переместить точки приложения электродвижущих сил и на концы параллельных проводников. Если мы поместим здесь наши катушки, то получим другое соединение. Треугольники, служащие теперь лишь проводящими соединениями для трех левых концов катушек, могут быть стянуты в одну точку. Эти соединения, из которых первое называется «треугольником», а второе — «звездой», широко применяются как в двигателях, так и в генераторах.
Свой первый трехфазный асинхронный двигатель Доливо-Добровольский построил зимой 1889 года. В качестве статора в нем был использован кольцевой якорь машины постоянного тока с 24-мя полузакрытыми пазами. Учитывая ошибки Теслы, Доливо-Добровольский рассредоточил обмотки в пазах по всей окружности статора, что делало более благоприятным распределение магнитного поля. Ротор был цилиндрическим с обмотками «в виде беличьей клетки». Воздушный зазор между ротором и статором составлял всего 1 мм, что по тем временам было смелым решением, так как обычно зазор делали больше. Стержни «беличьей клетки» не имели никакой изоляции. В качестве источника трехфазного тока был использован стандартный генератор постоянного тока, перестроенный в трехфазный генератор так, как это было описано выше.