Изменить стиль страницы

Захватывающие возможности! Но откуда они? Что случилось?

В радиоэлектронику пожаловали лилипуты.

…«Сенсационное изобретение!» Под таким заголовком американский журнал «Радио ньюс» в сентябре 1924 года напечатал редакционную статью, целиком посвященную работе О. В. Лосева, сотрудника Нижегородской радиолаборатории.

Рассказывалось о «кристадине» (кристаллическом гетеродине), как окрестил Олег Владимирович свою новинку — безламповый приемник, значительно более чувствительный, нежели обычные детекторные. В основу конструкции был положен эффект, обнаруженный Лосевым в январе 1922 года: крупицы окиси цинка, включенные по определенной схеме в колебательный контур, обретают способность усиливать и генерировать радиоволны. «Открытие Лосева делает эпоху», — писал журнал, выражая надежду, что вскоре хрупкую и довольно сложную вакуумную лампу заменит специально обработанный маленький кусочек цинкита или нового вещества — простой в изготовлении и нетребовательный в обращении (термин «полупроводник» тогда еще не вошел в языковый обиход).

Секреты кристаллического детектора удалось разгадать лишь после того, как родилась квантовая механика и на ее основе начала быстро прогрессировать наука о твердом состоянии вещества.

Огромный вклад в эту область знаний внесла школа академика А. Ф. Иоффе. Сам Абрам Федорович физикой твердого тела увлекся еще до революции, когда работал в мюнхенской лаборатории великого Рентгена. Ступив на пионерскую тропу, он не только сам прокладывал столбовую дорогу к современной микрорадиоэлектронике, но и сплотил вокруг себя многолюдный коллектив энергичных, талантливых сподвижников. Среди них можно назвать Б. П. Давыдова, В. Е. Лошкарева, С. П. Пекара, Я. И. Френкеля, Б. В. Курчатова, Б. Т. Коломийца, Д. И. Блохинцева, Б. М. Вула, И. Кикоина, М. М. Носкова, Ю. П. Маслаковца, А. Н. Арсеньеву.

В 1932 году при Ленинградском физико-техническом институте по инициативе его директора А. Ф. Иоффе вместо прежней небольшой бригады было организовано сразу три лаборатории, где всесторонне изучалась полупроводимость, а через двадцать лет на этой базе возник Институт полупроводников.

Физика твердого тела выяснила механизм полупроводимости.

По медной проволоке прекрасно проходит ток потому, что в ней всегда имеются свободные электроны. А вот в фарфоре их нет совсем — перед нами изолятор. Но и он при некоторых условиях может в какой-то мере уподобиться металлу. Такое бывает, например, при пробое на высоковольтных установках. Разряд произойдет в том случае, если разность потенциалов превысит дозволенный предел. Тогда электроны получат столь мощный «шлепок», вернее, столь солидную порцию энергии, что вырвутся из цепких объятий атомов «на волю», в область проводимости. Квантовой теорией их «освобождение» трактуется как гигантский прыжок через широченную «пропасть» — запрещенную зону. У полупроводников это препятствие сравнительно невелико, у металлов же (проводников) его нет вообще.

Если электрон очутился в полосе проводимости, то что он оставил вместо себя «дома»? Ничего.

Пустое место. Выражаясь фигурально — вакансию, а попросту «дырку». Но ведь исчезновение электрона эквивалентно появлению единичного положительного заряда! И если приложить к такому кристаллу разность потенциалов, ток через него пойдет не только благодаря присутствию электронов в зоне проводимости. Начнется встречное движение зарядов со знаком «плюс», незанятых мест. Представление о «дырочной» проводимости, несмотря на всю его условность, оказалось весьма плодотворным, в теоретических расчетах. А предложил его Я. И. Френкель.

Им же введено понятие «экситона» — возбужденного нейтрального состояния, когда электрон, не вполне оторвавшись от атома, остается тесно связанным со своей «дыркой» и если путешествует, то только вместе с ней. Услышав об этой идее, Вольфганг Паули лаконично аттестовал ее так: falsch (грубо говоря «чушь»). Так сказал великий Паули, именем которого назван фундаментальный принцип, служащий опорой при изучении тех же кристаллов…

В наши дни количество книг и статей об экситонах, всеми признанной физической реальности, исчисляется сотнями. В 1936 году развитию этой идеи посвятил свою работу не кто иной, как американец У. Шокли — тот самый, кому в 1949 году довелось создать первый полупроводниковый триод, названный транзистором (от английских слов «трансфер» и «резистор» — «преобразователь» и «сопротивление»).

В 1966 году киевлянам — действительным членам АН УССР А. С. Давыдову и А. Ф. Прихотько, докторам физико-математических наук М. С. Брауде, А. Ф. Лубченко (Институт физики АН УССР), доктору физико-математических наук Э. И. Рашбе (Институт полупроводников АН УССР), ленинградцам — члену-корреспонденту АН СССР Е. Ф. Гроссу, кандидатам физико-математических наук Б. П. Захарчене и А. А. Каплянскому (Физико-технический институт имени А. Ф. Иоффе) присуждена Ленинская премия за исследования экситонов в кристаллах. Вот что писал о значении этих работ академик Б. П. Константинов: «По-видимому, новые экспериментальные и теоретические результаты помогут разобраться в сущности многих биофизических явлений и химических реакций. Возможно, экситонное состояние кристаллов можно будет использовать для создания новых квантовых генераторов».

Интересна судьба еще одной идеи, высказанной Френкелем и Иоффе в 1932 году.

Как выпрямляется переменный ток на границе между металлом и полупроводником? Скажем, между медью (Cu) и ее закисью (Cu2O)?

На границе между ними возникает как бы тончайшая плоская перегородка, которая наделена замечательным свойством — односторонней проницаемостью: в зависимости от того, как приложено напряжение, она то почти непроходима для тока, то практически прозрачна, открыта для него настежь.

И пропускает его главным образом лишь в одном направлении (от Cu2O к Cu, но не наоборот), что делает такой двуслойный полупроводник похожим на двухэлектродную радиолампу, способную выпрямлять переменный ток — преобразовывать его в постоянный, правда, не в непрерывный, а в импульсный: ведь он проходит лишь в те моменты, когда разность потенциалов увлекает электроны от катода к аноду. В противном случае лампа «заперта».

Примерно так же работал и лосевский цинкитный детектор, разве что там были взяты не Cu2O и Cu, а ZnO и Zn. Однако включенный в схему кристадина, он мог еще и усиливать колебания! Но как?

В вакуумной лампе (триоде) эта цель достигается введением третьего электрода: между катодом и анодом помещают сетку. Когда нужно, она помогает электронам: притягивая их, она увеличивает густоту и скорость их потока. А что же происходит в полупроводящей пленке на границе ее с металлом?

Размышляя над подобными явлениями, Френкель и Иоффе объяснили некоторые из них туннельным эффектом. Мол, электроны, даже если у них не хватает «силенок», энергии, все же способны иногда просачиваться через запорный слой, имеющий очень небольшую толщину — чуть шире атомных размеров. Критическая проверка этой теорий в последующие годы показала, что в основе выпрямляющего действия на контакте (к примеру, между Cu2O и Cu) лежит иной механизм. Но мысли советских ученых опередили свое время. «Понадобилось двадцать пять лет бурного развития физики и техники полупроводников, чтобы идея Я. И. Френкеля и А. Ф. Иоффе воплотилась в туннельном диоде, открытом японским ученым Есаки в 1959 году», — писал недавно лауреат Нобелевской премии академик Игорь Евгеньевич Тамм.

Радисты 20-х годов не ведали, сколь важна структурная однородность, химическая чистота и какова роль примесей в тонкой пленке кристаллического детектора. При его изготовлении благоприятное сочетание всех необходимых свойств и условий достигалось случайно. И конечно же, не везде, а лишь на некоторых участках. Приходилось мучительно долго, со всеми предосторожностями зондировать поверхность нежным усиком проволочной спиральки, чтобы нащупать заветную точку. Когда же ее обнаруживали, малейшее сотрясение или атмосферный разряд могли «сбить» ее, нарушить полупроводниковые свойства в месте контакта. И только много лет спустя физика твердого тела, казалось бы, столь далекая от практической радиотехники, подсказала, какая нужна, пленка и как получать ее — однородную, прочную, надежную.