ЧЕЛОВЕК И ДРОЖЖИ

Мы встречаем здесь в некотором смысле парадокс, так как, несмотря на генетические изменения у индивидуальных организмов, эволюция обладает фантастической консервативностью. Случайным изменениям, встречаемым в онтогенезе, то есть в истории особи, сопутствует исключительная стабильность в филогенезе, в истории вида. Консервативность выходит далеко за пределы того, что мы могли раньше вообразить.Известно, что молекула белка представляет собой цепь, состоящую из отдельных фрагментов-аминокислот. В настоящее время экспериментально подтверждено существование 25 видов аминокислот. Молекула одного белка отличается от молекулы другого как видами входящих в нее аминокислот, так и порядком, в котором они расположены. В клетке молекулы белков синтезируются на основе информации, поступающей от генов, которые, в свою очередь, состоят из фрагментов-нуклеотидов. Несколько нуклеотидов ответственны за выбор аминокислоты данного вида и размещение ее в данном месте цепи молекулы белка.Можно сравнить, например, аминокислотные последовательности в белках одного и того же типа у организмов разных видов. Оказывается, что а-цепь гемоглобина гориллы отличается от человеческой только одной аминокислотой из 146. Для синтеза последовательности из 146 аминокислот требуется специфическая последовательность из 3X146=438 нуклеотидов в соответствующем гене. Таким образом, между гориллой и человеком различие только в одном нуклеотиде из 438.Другая близкородственная группа белков — это цитохром С, один из ферментов клеточного дыхания. Он является одиночной цепью из 104 аминокислот, расположенных в строгой последовательности и, значит, синтезируется геном, имеющим 312 нуклеотидов. Между человеком и обезьяной макакой резус существует различие в одной аминокислоте из 104. Между человеком и лошадью — двенадцать различий, между человеком и цыпленком — четырнадцать, между человеком и тунцом — двадцать два, наконец, между человеком и дрожжевой клеткой — сорок три.Были времена говорит Дж. Уолд, сколько-то миллиардов лет тому назад, когда существовал общий предок дрожжей и человека. Некоторые его потомки пошли одним путем и постепенно стали дрожжами, некоторые другие следовали иной дорогой и постепенно стали человеком. Два пути ведут из того отдаленного прошлого, когда мы и дрожжи были одно, и за время этого двойного путешествия в гене, определяющем строение цитохрома С, произошли изменения всего в сорока трех нуклеотидах из 312.

БИОЛОГИЧЕСКИЙ БИЛЬЯРД

Вернемся к нашему вопросу о том, существует ли специальная биологическая информация? Чтобы с чего-то начать, зададим другой вопрос: чем отличается молекула белка от бильярдного стола?Самой главной характерной особенностью нашего бильярдного стола было то, что для каждого шара на нем не существовало никаких преимущественных положений. В молекуле белка, наоборот, каждый атом занимает относительно других атомов строго определенное, предназначенное именно для него положение. Можно ли говорить, что молекула белка представляет собой в этом смысле диаметральную противоположность бильярдному столу? Если шары идеально круглые и, как говорят, полностью изотропны, то есть обладают в точности одинаковыми свойствами в любом месте внутри шара и на его поверхности, то так оно и есть на самом деле.Однако стоит нам, например, намагнитить шары, и картина существенно меняется. Если, скажем, намагнитить шары так, чтобы каждый из них представлял собой двухполюсный магнит, то по прошествии относительно небольшого времени после первого удара они не только не разбегутся по всей поверхности стола, а, наоборот, создадут характерные фигуры, напоминающие движущиеся кольца.Мы говорили раньше, что случая, когда произвольно движущиеся шары снова соберутся в пирамидку, нужно ждать миллионы лет. Это справедливо опять-таки для идеально круглых однородных шаров. Если же шары намагнитить специальным, довольно сложным образом, то они начнут собираться в пирамидку значительно чаще. Правда, всякий раз, собравшись, опять будут расходиться, потому что общий запас кинетической энергии, по условию, остается неизменным.

Молекула белка и представляет собой такое образование из намагниченных, или, можно иначе сказать, помеченных шаров. Из одного этого сопоставления становится совершенно ясно, что информация, управляющая строительством и поведением живого организма, — это та же самая хорошо знакомая нам информация, с которой мы впервые познакомились, перенумеровав бильярдные шары.Девяносто девять процентов частей живых организмов состоят всего из четырех естественных элементов: углерода, водорода, кислорода и азота. Одно из особых свойств углерода, кислорода и азота заключается в том, что радиусы связей и, следовательно, внутриатомные расстояния в молекулах почти равны для всех трех элементов так же, как и углы между связями. В результате цепи, образованные этими атомами, имеют почти одинаковую геометрию независимо от того, состоят ли они целиком из углерода или последний любым .образом перемешан с атомами кислорода и азота. Две такие цепи могут геометрически соответствовать друг другу при любой последовательности составляющих их атомов и при любом вновь возникающем изменении в их составе.Продолжая аналогию с бильярдом, можно сказать, что белковые заготовки — аминокислоты — напоминают бильярдные шары, намагниченные простейшим образом, так что каждый шар представляет собой двухполюсный магнит. Такие заготовки (как и шары) могут соединяться между собой любым произвольным образом. Дожидаться того, чтобы аминокислоты сами собой- объединились, скажем, в молекулу ДНК, это, в известном смысле, то же самое, что и дожидаться, чтобы произвольно движущиеся по поверхности бильярдные шары сами собой собрались в пирамидку. А они тем не менее собираются! Как же это происходит?

ЕДИНСТВЕННОЕ ЧУДО

Один из наиболее универсальных законов современной квантовой физики гласит: всякое возможное событие, то есть событие, не запрещенное законами сохранения, рано или поздно, но обязательно наступает. Это справедливо и для аминокислот. Соединяясь в самые произвольные сочетания и затем снова разъединяясь, они в конце концов должны соединиться в молекулу ДНК. И вот тут проявляется некое замечательное свойство, которое при желании можно даже считать чудом.Мало того, что молекула ДНК сама по себе оказывается весьма устойчивой, она еще поставляет информацию (отдает соответствующие распоряжения) в окружающую среду и благодаря этому воспроизводит сама себя и другие белковые молекулы. Что же касается информации, то это та самая, уже хорошо знакомая нам информация, действующая в термодинамических, атомных и любых других физических системах. Просто, когда этой информации накапливается достаточно много, совершается диалектический переход и материя приобретает новое качество — качество живого.Ну а как же быть со вторым началом термодинамики и его многочисленными следствиями? Читатель, наверное, давно уже подметил, что авторы не склонны считать второе начало термодинамики столь же всеобъемлющим законом природы, как, например, закон сохранения энергии. Второе начало термодинамики, безусловно, действует в массовых вырожденных системах, то есть системах, состоящих из очень большого количества неотличимых друг от друга элементов и таких, что каждое отличимое состояние в них может быть реализовано очень большим количеством способов. Однако по мере снятия вырождения справедливость второго начала, вообще говоря, становится сомнительной.Лучшим примером может служить хотя бы та же молекула воды. Как совсем недавно отмечалось, атомы водорода в ней расположены под строго определенным углом. Если считать, что этот угол не может быть известен с точностью большей, чем одна минута, то в молекуле воды каждый раз реализуется один способ из 10800 возможных. Молекула воды — достаточно информированная система. Во-первых, ее энтропия значительно ниже максимально возможной, то есть энтропии такой системы, в которой атомы водорода могут располагаться совершенно произвольным образом. И во-вторых, при этом нет никаких оснований считать, что по истечении сколь угодно большого промежутка времени молекулы воды как-либо изменятся, станут более беспорядочными. Все то же самое справедливо в еще большей степени для сложных молекул органических веществ.— Но организмы все-таки стареют и умирают! — скажете вы.Это верно. Но у нас, во всяком случае, нет достаточных оснований считать, что это из-за второго начала термодинамики. Живые организмы действительно подвержены процессу старения, причем большинство ученых сходятся сегодня на том, что процесс старения имеет своей причиной частичное разрушение генетических кодов за счет неизбежных мутаций. Но то, что приносит смерть и разрушение одному индивидууму, служит целям еще большего повышения устойчивости биологического вида в целом. Можно пойти и дальше. Отдельные биологические виды приходят на смену друг другу, непрерывно совершенствуясь, и это служит целям повышения устойчивости (как говорил Дж. Уолд, консервативности) биосферы в целом.По словам того же Дж. Уолда, появление размера и формы, переход от неопределенности ко все увеличивающемуся определенному порядку в материальной организации — это одна из сущностей исторического развития вселенной. Морфология — это непрерывно утолщающаяся нить, проходящая через всю иерархию рангов организации материи. И дело не в том, что вселенная имеет тенденцию к порядку. Как раз наоборот, она проявляет сильнейшую тенденцию к беспорядку, выраженную вторым законом термодинамики. Однако в мощном потоке, устремленном в направлении возрастающей неупорядоченности, создаются условия сохранения некоторой малой доли порядка и даже известного увеличения этой доли. Здесь нет нарушения второго закона. Это маленькая область порядка образует едва различимый водоворот в общем ламинарном потоке к беспорядку, и за него (за этот водоворот) заплачено много раз и с избытком увеличением беспорядка в других областях вселенной.У нас есть все основания не согласиться с автором только что приведенного высказывания. Начнем с того, что второе начало термодинамики вообще справедливо лишь для замкнутых систем, ничем не обменивающихся с внешней средой. В то же время одним из самых характерных признаков живого организма являются процессы метаболизма, то есть процессы обмена с окружающей средой. Без метаболизма нет жизни. Поэтому физические системы, относящиеся к категориям живого, вообще не могут быть примерами ни в пользу, ни против справедливости второго начала.В процессе своей жизнедеятельности живые организмы потребляют энергию. Это и есть та цена, которой, по словам Дж. Уолда, заплачено за эволюцию. Более того, организмы потребляют энергию высокого качества и преобразуют ее в энергию самого низкого качества — тепло. Значит ли это, что жизнедеятельность организма сопровождается общим понижением качества энергии, то есть опять-таки повышением энтропии?Это может быть справедливо для отдельных участков вселенной, которые не изолированы, а значит, не обязаны подчиняться второму началу. Более того, у нас есть все основания полагать, что живые организмы в их высшей форме — организмы мыслящие — способны соответствующим образом организовывать потоки энергии в своей среде обитания, то есть повышать качество энергии (увеличивать информацию) и тем самым понижать энтропию системы.Последний возможный аргумент в этом рассуждении сводится к тому, что возрастает энтропия во всей вселенной и наличие биосфер в отдельных, локальных ее участках ускоряет этот процесс. Все, что можно ответить здесь, — это то, что лишь на самом примитивном уровне рассуждений можно присваивать вселенной в целом свойства, характерные для отдельных, локальных ее участков. Достаточно сказать, что если справедлива упомянутая нами раньше теория А. Фридмана и если за переживаемым нами сейчас периодом разбегания галактик последует период их сближения, то любые рассуждения о тепловой смерти вселенной теряют всякий смысл.Возвращаясь, однако, к нашей теме, мы можем сказать, что живое есть продукт совместного действия энергии и информации, причем в процессе творения живой материи одно не может заменить другое. Энергия не может заменить информацию, и наоборот. Следовательно, рассмотрение биологических систем еще раз подтверждает наш основной тезис о том, что информация есть независимая и универсальная физическая величина.