Другая проблема — ужесточение законодательства об охране окружающей среды: высокие затраты на очистные сооружения делают синтетический каучук еще дороже. И конкуренция между натуральным и синтетическим каучуком вновь резко обострилась. Так, американские шинные компании «Гудьир» и «Файрстон» начали в спешном порядке расширять плантации каучуконосов в Либерии и странах Латинской Америки. (Кстати, основной экспортер природного каучука сейчас не Бразилия, а Малайзия — свыше 40 процентов мирового производства — и Индонезия.)

Если можно выращивать каучук, так сказать, «живую резину», то, взглянув на дело глазами профана, уместно поставить и такой вопрос: а нельзя ли выращивать и нефть или какие-то вещества типа нефти или бензина, которые бы стали такими же естественными продуктами фотосинтеза, как глюкоза, жиры и белки?

В самом деле: ведь умеют же растения вырабатывать углеводороды, и высокого качества! В латексе гевеи углеводородные цепочки более длинные, чем в нефти, беда только в том, что они на две трети разбавлены водой.

Итак, почему бы не подыскать растения, непосредственно производящие нефтепродукты? Фантазии? Ан нет! Мысль о растущей нефти выдвинул не профан, а видный ученый, специалист по фотосинтезу, неутомимый пропагандист его возможностей — американский ученый М. Кальвин.

Вдохновленный этой новой идеей, Кальвин, что называется, засучил рукава и принялся за дело. В серии многочисленных опытов он доказал, что густой белый сок, выделяемый рядом тропических деревьев, представляет собой, по существу, легкий углеводород, из которого можно получать жидкую нефть, если удалить воду из эмульсии. Этот сок может стать превосходным сырьем для изготовления высококачественного бензина.

А добывают сок просто из надрезов на коре деревьев. При этом древесина, естественно, не повреждается и может при необходимости быть использована в строительстве или для производства бумаги. Где же растут эти чудо-деревья? Во многих областях земного шара: в Бразилии, Индонезии, Африке.

Эти растения семейства молочаевых Кальвин обнаружил и у себя в Калифорнии. И сейчас он пытается заняться их разведением.

Чтобы убедить скептиков, Кальвин устроил демонстрационный пробег. Используя бензин, полученный им в лаборатории из сока бразильских деревьев, он около ста километров колесил по дорогам Америки.

Экономические расчеты, произведенные ученым, показывают, что себестоимость барреля такой нефти составляет 20 долларов при получении 10 баррелей с гектара в год. Однако если отдача с гектара возрастет до 20 или 30 баррелей в год, то себестоимость нефти снижается соответственно до 15 и даже до 10 долларов за баррель. Для сравнения: в марте 1978 года (сейчас цены еще поднялись) за один баррель нефти, ввозимой в США, платили по 15 долларов.

«За десять лет нам удалось в пять раз увеличить производство, — заявил недавно Кальвин, — и я считаю, что, когда добьемся выведения лучших сортов, половину земель штата Аризона можно будет засевать «нефтеносными» растениями. Двадцать миллионов гектаров, которые в настоящее время пустуют, могут давать столько нефти, что легко обеспечат 10 процентов потребности США в жидком топливе».

Теперь у профессора Кальвина появились и последователи, например, агроном из Франции Сан де Пер-сево. Он намеревается культивировать бразильские деревья и уже подсчитал, что каждый год с одного гектара плантации сможет получать железнодорожную цистерну жидкого топлива.

Добавим еще одну немаловажную подробность — при сгорании растительная нефть не загрязняет окружающую среду двуокисью серы или какими-либо другими токсичными компонентами.

И еще одно: из нефтяного сока уже вырабатывают смазочные материалы для моторов самолетов и точных машин, а также защитные средства против обледенения.

Проект «Фотоводород»

Предыдущий рассказ о гевее и растениях рода молочаевых, как надеется автор, укрепил веру читателя в то, что растения способны на многое. И даже на производство... водорода!

В 1942 году американский исследователь Г. Гаффрон обнаружил, что сине-зеленые водоросли (рекордсмены среди растений по длительности существования на Земле — 3 миллиарда лет!), помещенные в искусственную атмосферу из инертного газа (без углекислоты и кислорода воздуха), начинают под действием света выделять вовсе не кислород, а водород.

Как же так? Мы привыкли, что растения выделяют кислород, которым дышит все живое, а тут...

В поисках ответа на этот вопрос наука еще не пришла к единому мнению. Но, видимо, накопившиеся в результате разложения воды излишки водорода (напоминаем, что в естественных условиях этот водород соединяется с углекислотой воздуха) требуют выхода, удаления. И водоросли «извергают» их.

Водородный цех может работать не только в сине-зеленых водорослях, но и в некоторых видах фотосинтезирующих бактерий. А также в искусственных системах, содержащих выделенные из растений хлоропласты.

Ну чем не фантастика! Не надо копировать тончайшие процессы разложения воды (химическая бионика), а сразу получать уже готовый водород.

Брать от растений не только плоды или клубни, но и топливо. Однако не в виде дров, как встарь, а по-иному — остановить фотосинтез на стадии разложения воды и вывести водород из недр растений (или водорослей, или бактерий) до того, как он будет израсходован на восстановление углекислоты воздуха.

Подобные исследования были начаты во многих странах. В нашей стране возник проект «Фотоводород», объединяющий многие организации.

Его совместно осуществляют находящийся в подмосковном городе Пущино Институт фотосинтеза Академии наук СССР, химический и биологический факультеты Московского государственного университета и другие научные коллективы.

Конечная цель проекта «Фотоводород» — подобрать биологические системы, которые бы использовали солнечную энергию для извлечения из воды не только кислорода, но и водорода.

Вновь не будем углубляться в научные тонкости, а обрисуем лишь контуры. Наиболее развит аппарат фотосинтеза у высших растений. Но заставить работать высокоразвитые создания так, как это надо нам, совсем не просто. Поэтому выбрали обходный путь — модельные системы.

Решили разрушить клетки растений, выделить хлоропласты — органеллы, в которых идет фотосинтез, в чистом виде и поместить их в специально приготовленный раствор — среду, удобную для их функционирования.

В помощь хлоропластам приданы еще два необходимых компонента: ферредоксин — «профессиональный» переносчик электронов, образующихся при поглощении хлорофиллом квантов света, и гидрогеназу — биологический катализатор, способствующий быстрейшему выделению водорода.

Первая установка такого типа была создана в 1973 году в США. Она давала 15 микролитров водорода на миллиграмм хлорофилла и работала всего четверть часа. Дело в том, что ее составляющие части — ферредоксин и гидрогеназа — оказались очень нестойкими.

Тогда за дело взялись совместно советские и английские ученые (работники Института фотосинтеза в Пущине сотрудничали с лабораторией Лондонского университета, которой руководил профессор Дэвид Холл). Их установка выделяла уже литр водорода в час на грамм хлорофилла и работала 6 часов. Ученые сумели найти правильное соотношение частей, подобрали стойкие к окислению ферменты. Но через шесть часов погибает хлоропласт!

И в естественных условиях «срок службы» хлоро-пластов и молекул хлорофилла недолог. Но живая клетка непрерывно заменяет выбывшие из строя «детали» новыми — идет непрерывная регенерация рабочих частей.

Обновляется и состав хлорофиллов. И даже хлоропластов, крошечных фабричек фотосинтеза. А в искусственной системе этого нет. Поэтому здесь задача — постараться превзойти природу, сделать хлоропласта долгожителями, которые и с возрастом не теряли бы своих рабочих качеств.

Ученые многих стран мира пытаются продлить жизнь всех трех главнейших элементов: хлоропластов, ферре-доксина и гидрогеназы. Это один путь. Но есть и другой. Можно заменить живые элементы системы их синтетическими аналогами.