В современных паротурбинных (на смену паровым машинам Уатта лет через сто пришли более совершенные турбины) блоках тепловых и атомных электростанций температура водяного пара не превышает 600 градусов Цельсия. Или 873 градуса Кельвина. И получается, что идеальный КПД для этих установок есть

873 — 293/873 = 0,6 (60%).

Но 60 процентов — это оценка сверху! Реальные цифры оказываются значительно меньше. Их можно получить не по Карно, а из цикла Ренкина.

Куда теряется 60—70 процентов первоначально извлеченных (скрытых в топливе) запасов энергии? О, тут масса лазеек! Трудно добиться полного сгорания топлива, достичь полного охлаждения горячих газов. Часть энергии уходит на трение и необратимый переход тепла. И так далее.

Вот и результат: для современных поршневых паровых машин и двигателей внутреннего сгорания реальный КПД не превышает 30 процентов, а для более совершенных устройств — паровых и газовых турбин — 40 процентов. Следует еще раз подчеркнуть, что цифра эта вряд ли изменится в будущем. За два века изобретатели и инженеры «выжали» из тепловых машин все! И их КПД достиг предела.

Вот почему с таким энтузиазмом были, например, приняты работы по созданию МГД-генераторов. Ведь в них поток горячей плазмы нагрет до 2500—3000 градусов Цельсия. Температура Т1 в формуле Карно резко возрастает!

Но опять неувязка! Одновременно в этих устройствах растет и температура Т2: плазма на выходе из магнитогидродинамического генератора все еще остается очень горячей (те же тысячи градусов). Поэтому МГД-генераторы могут эффективно работать лишь в сочетании с обычной паротурбинной установкой.

И суммарный выигрыш в КПД оказывается не таким уж великим. Удается достичь лишь цифры в 50 процентов. (Со временем исследователи, работающие над усовершенствованием МГД-установок, надеются получить показатели повыше: 60 процентов.)

Однако будем справедливы: и этот вроде бы небольшой привесок в 10 процентов (от 40 до 50) в масштабе, скажем, такой страны, как наша, дает колоссальный прирост энергии Если бы все ГРЭС СССР удалось перевести на МГД-метод, то был бы достигнут громадный экономический эффект.

Гигантизм поневоле

Сто лет назад изобретатель электрического освещения П. Яблочков мечтал о времени, когда электричество будут вырабатывать на особых «фабриках» и затем распределять по домам подобно тому, как водопровод распределяет воду.

Эти фабрики электричества — ТЭС, ГРЭС, АЭС — уже построены и становятся все мощнее.

Огромный зал Чудовищной величины узлы монтируемой турбины и маленькие фигурки людей, собирающих эту махину.

Современные ТЭС — с чем сравнить эти колоссы? С мамонтом, динозавром?.. Отчего эти железные «звери» энергетики, пожирающие астрономические количества угля и нефти, становятся с каждым годом все крупнее? Оправдывается ли тяга к гигантизму?

У нас в стране в 1913 году единичная мощность турбоагрегата составляла всего лишь 500 киловатт. Через 40 лет на Черепетской ГРЭС был уже пущен турбоагрегат мощностью 150 тысяч киловатт.

А за последние 20 лет единичная мощность турбогенератора возросла с 200 до 1200 мегаватт (1200 тысяч киловатт).

Машины стали столь крупными, что возникла проблема: как перевозить их по железной дороге? Проектировщики вынуждены «вписывать» все более мощные турбогенераторы в практически неизменный объем.

О размерах энергоагрегатов говорят хотя бы следующие цифры. Для размещения уникального энергоблока-гиганта мощностью 1200 тысяч киловатт на Костромской ГРЭС пришлось возвести машинный зал длиной свыше 80 метров и высотой, равной 15-этажному дому!

От ГРЭС не отстают и атомные гиганты. Так, корпус третьего энергоблока Белоярской АЭС взметнулся ввысь на 60 метров!

Что дает гигантизм? Прежде всего более высокие значения КПД.

Вспомним формулу Карно. Поднять температуру пара (Т1) можно, повышая его давление. Но внедрение агрегатов с высокими параметрами пара немыслимо без резкого увеличения их мощности.

В 20-х годах нашего века температура пара не превышала 350 градусов (по Цельсию) при давлении до 15 атмосфер. Сейчас же на современных электростанциях температура пара уже достигает 500—600 градусов, а давление — нескольких сот атмосфер.

Пробиться к более высоким показателям трудно. Мешает «тепловой барьер». При таких громадных давлениях и температурах паропроводящая труба будет нагреваться до свечения.

Нужны особые теплоустойчивые сплавы. Тут не годится даже металл, идущий на двигатели реактивных самолетов и ракет. В этих двигателях он работает при температуре около тысячи градусов всего лишь 100— 200 часов, а в турбинах и котлах электростанций он должен выдерживать 600—700 градусов уже 100 тысяч и более часов!

Итак, энергетические гиганты требуют миллионы тони высокожаропрочных специальных сплавов. Но стоимость материалов, способных сохранить работоспособность в таких трудных условиях — влажность, высокие температуры, высокие скорости вращения — сегодня непомерно велика.

Это и ограничивает максимальный КПД ТЭС цифрой в 40 процентов. И если в начале тридцатых годов перспективы развития энергетики многие связывали с использованием высоких давлений, то теперь так не думают.

Однако гигантизм энергетических машин привлекателен еще и по другим причинам. Полезно сопоставить технико-экономические показатели ТЭС различной мощности. При увеличении мощности станции с 200 до 1200 мегаватт стоимость одного киловатта мощности снижается со 150 до 80 рублей. Численность обслуживающего персонала на каждую тысячу киловатт, или так называемой «штатный коэффициент», уменьшается с 4 до 0,5 человека. Почти вдвое сокращается удельный объем главного корпуса станции: число кубометров здания, приходящееся на один киловатт установленной мощности.

Давно подсчитано: на изготовление агрегата мощностью в 300 тысяч киловатт затрачивается в полтора раза меньше труда, нежели на изготовление трех турбин по 100 тысяч киловатт каждая. Еще пример: при одинаковых затратах металла и труда и при равноценной экономичности можно построить три агрегата по 500 тысяч киловатт вместо четырех агрегатов по 300 тысяч киловатт, выиграв, таким образом, производительность целого агрегата.

Эти и другие доводы и вынуждают энергетиков строить все более и более мощные фабрики энергии. Но есть ли пределы гигантизма?

Недавно в ленинградском объединении «Электросила» был изготовлен самый мощный в мире двухполюсный турбогенератор на 1200 мегаватт со скоростью вращения ротора 3000 оборотов в минуту.

Специалисты считают: видимо, предельные мощности турбогенератора — 2500 мегаватт (3000 оборотов в минуту).

Напряженность механических конструкций возрастет настолько, что центробежные силы разорвут узлы даже из самой прочной стали. Понадобятся непомерно большие роторы.

Но, прибавляют те же специалисты (ведущий среди них академик И. Глебов), более мощные машины все же возможны, но они будут работать уже на других физических принципах. С использованием сверхпроводимости.

Специалисты обещают создать промышленные криотурбогенераторы мощностью в 3000 мегаватт на рубеже нового века.

Так что соревнование исполинов энергетики в силе и размерах продолжается!

Баллада о паровозе и ящере

Жил-был паровоз. Когда-то он был маленький и только еще учился ходить.

Изобретатели пытались поставить его на ноги в буквальном смысле слова. История техники знает несколько моделей паровозов, снабженных ногами. Ведь паровоз вроде бы должен был заменить лошадь...

Паровоз рос, мужал, вошел в моду. Но и тогда, когда он был в зените славы, находились люди, скептически смотревшие на могучего красавца. Они говорили:

— Со странным чувством смотрю я на эту машину. Испытываю такие же ощущения, как если бы мне пришлось видеть мамонтов и знать, что скоро они все до единого вымрут. И только в слоях вечной мерзлоты (читай: в музеях истории техники) будут изредка встречаться их поросшие рыжим волосом огромные туши (огромные железные тела, в которых давно погас огонь)...