Концепция Потапова была, несомненно, верной, но у нас возникли организационные и технические трудности с ее реализацией. Выполнение работы на заводе задерживалось. После того, как договорные сроки изготовления и испытаний установки закончились, специалисты завода не вышли на автономный режим работы установки. Представители завода договорились со мной о том, что они сдают не готовое изделие, способное работать в автономном режиме, а комплект для изготовления стенда и экспериментов, по цене 50 % от договорной цены. Полагая это неплохим компромиссом, я получил экспериментальный стенд для исследований, и начал его дорабатывать. Юрий Семенович некоторое время работал со специалистами завода имени Дегтярева по данному проекту, но затем непосредственного участия в работе не принимал. Дальнейшие исследования в лаборатории я проводил самостоятельно. Большую помощь в работе по данному проекту оказал Погоняйло Игорь Анатольевич, офицер запаса, специалист высшей квалификации в области силовых установок, применяемых на судах ВМФ.

Испытательный стенд был получен мной в комплекте с неисправным вентилятором. По этой причине, вентилятор был заменен на новый центробежный вентилятор ВДС-5, производительностью 800 кубометров воздуха в час, потребление электроэнергии примерно 5 кВт в час.

Исследования показали, что концепция использования центробежных машин в автономных энергокомплексах вполне работоспособная. Нам удавалось получить около 3 кВт полезной мощности в лампах накаливания, причем это не оказывало влияния на увеличение потребляемой мощности. Эта принципиальная схема преобразователя, который использует рабочую массу потока вещества (воды или воздуха), и имеет почти полную конструктивную развязку между первичным источником «возбуждения среды» и устройством приема и преобразования кинетической энергии потока.

Можно сказать, что имеется даже некоторая «положительная связь»: если тормозить турбину, включая электрическую нагрузку, или полностью закрывать воздуховод между турбиной и вентилятором крышкой, то мощность, потребляемая электроприводом вентилятора, значительно уменьшается (от уровня 6–7 кВт до 4–5 кВт). Главное, то, что кинетическая энергия потока воздуха в такой конструкции увеличивается за счет центробежных сил, в результате сжатия рабочего тела – воздуха. При этом, потребление электроэнергии вентилятора можно минимизировать различными методами, например установкой конденсаторных компенсаторов реактивной мощности привода и точной настройкой контура в резонанс. Сложный автоматически регулируемый компенсатор реактивной мощности, в данном случае не нужен, так как у вентилятора постоянная нагрузка. Необходим мощный силовой конденсатор, имеющий величину КВАР – «КилоВольтАмперРеактивные», соответствующую мощности вентилятора.

Мы также изучили некоторые аспекты оптимизации данной конструкции. На участке от выходного отверстия центробежного вентилятора до турбины, был установлен воздуховод диаметром 400 мм (по диаметру турбины) и длиной 1 метр. При создании в данном воздуховоде вращательного процесса движения воздушной массы, мощность в нагрузке электрогенератора увеличивалась на 5–7 % по сравнению с прямолинейным движением воздушной массы. Вращение потока воздуха обеспечивалось наклонными направляющими, устанавливаемыми внутри воздуховода на его стенки. Мощность потребления вентилятора контролировалась цифровым счетчиком электроэнергии. Это увеличение мощности на выходе электрогенератора происходило без увеличения мощности потребления вентилятором, лишь за счет конструктивных пассивных элементов, фактически, за счет изменения траектории воздушного потока.

Перспективы получения автономного режима были небольшими, кинетической энергии потока воздуха от вентилятора ВДС-5 не хватало на преодоление потерь (КПД турбины и генератора). При потреблении вентилятором 5 кВт электроэнергии, в нагрузке генератора мы уверенно получали до 3 кВт мощности, но дальнейшее увеличение нагрузки приводило к потере качества электроэнергии (снижение числа оборотов и падению напряжения на выходе генератора). Было принято решение увеличить объем и давление рабочей массы воздуха, и для этой цели приобретен компрессор типа АФ53, с рабочим давлением на порядок выше, чем у ВДС-5.

По причине отсутствия финансирования по данной теме, а также после возникновения технических проблем с редуктором турбины, проект был прекращен в 2005 году. Экспериментальный стенд был продан другой компании. О дальнейших исследованиях по данной теме мне известно то, что практически ценных результатов они не получили, несмотря на привлечение профессиональных специалистов по аэродинамике. За теоретическими консультациями ко мне они не обращались.

Мы уже отмечали, что именно упругие свойства рабочего тела позволяют накапливать потенциальную энергию при его сжатии в области действия центробежной силы, а затем, получать избыточную кинетическую энергию. Важно также и понимание второй стороны открытой физической системы: упругие свойства окружающей эфирной среды. Эфир рассматривается в предлагаемой концепции, именно, как упругая среда, Менделеев использовал такой подход к объяснению свойств материи:

«… вот как определяется эфир: жидкость невесомая, упругая , наполняющая пространство, проникающая во все тела и признаваемая физиками за причину света, тепла, электричества и проч. Можно сказать, что эфир подобен газу. Называя эфир газом, мы понимаем флюид в широком смысле, как эластичный флюид , не имеющий сцепления между своими частицами» (Книга Менделеева «Попытка химической концепции эфира», Санкт-Петербург, типолитография М.П. Фроловой, 1905 год.)

Итак, важную роль в понимании физики рассматриваемых процессов занимает концепции массы частиц материи, включающую связанный с ними эфир. Именно, связанный с частицами материи эфир, занимающий пространство между атомами, определяет инерциальные свойства частиц массы. Следовательно, ускорение и центробежная сила являются эффектами упругого взаимодействия тела с окружающей упругой эфирной средой .

С данной точки зрения, дополнительная энергия, в частности, избыточный крутящий момент ротора, который может быть получен в технически замкнутой физической системе, обусловлен преобразованием энергии среды, в частности, упругими деформациями эфирной среды, и соответствующими этим деформациям термодинамическими изменениями в ней (поглощением и выделением тепла). Это и есть изменения свойств пространства, которые мы обсуждали в главе о теории процесса преобразования форм энергии.

По зарубежным аналогам данного проекта, можно отметить компанию EF9 Energy Systems, которая также ставит вопрос преобразования тепловой энергии атмосферного воздуха в полезную работу. Их сайт содержит немного информации о проведенных исследованиях, но достаточно подробно описывает теорию процесса http://ef9energysystems.com/ Они полагают, что главную роль в данном преобразовании энергии играет «эффект Бернулли». Цели данной компании, в настоящее время, включают создание 50 кВт генератора для частных домов, а также генератора энергии для автотранспорта.

Рассмотрим еще один пример машины, производящей работу при наличии сил гравитации и центробежных сил. Это устройство Чаза Кэмбелла (Chas Cambell) из Австралии. На рис. 48 показано фотография его колеса, вырабатывающего 3 киловатта электроэнергии.

Новые источники энергии _48.jpg
Рис. 48. Фото конструкции Чаза Кэмбелла. 3 кВт мощности. www.free-energy-info.com

В конструктивных решениях Кэмбелла, кроме обычного самовращающегося колеса со смещением центра тяжести, есть интересная концепция извлечения избыточной энергии при использовании маховика. Сечение «периферийного» маховика показано на рис. 48.

На фото рис. 49 показан экспериментальный стенд, для исследований по данной теме, в котором нет аккумуляторов. Мотор и генератор подключены к конденсаторным накопителям энергии. Связь через маховик, по мнению изобретателя, обеспечивает увеличение мощности. Обратите внимание на «окна» в маховике, в которых видны его внутренние элементы. Полагаю, что есть аналогии с конструкцией Кэмбелла и Амарасингама. На мой взгляд, объяснение данного эффекта, применяемого не только Кэмбеллом, но и другими авторами, заключается в том, что кинетическая энергия вращающейся массы вещества, имеет квадратичную зависимость от скорости, а значит и от радиуса. Увеличение скорости вращения в 3 раза, дает увеличение кинетической энергии в 9 раз.