Изменить стиль страницы

Мощность такой станции поначалу должна была составлять порядка 10 гигаватт, а площадь солнечных панелей около 100 кв. км. А общая масса конструкции около 50 000 т. Энергия должна была сбрасываться на Землю по лучу частотой 2,45 гигагерца.

Однако при этом, как показали расчеты, пришлось бы делать весьма солидных размеров приемную антенну на Земле и передающую на самой станции. Причем речь шла о конструкциях примерно 10 км в диаметре. Иначе просто не удалось бы достаточно точно прицелиться энергетическим лучом в заданную точку.

Ныне специалисты отдают предпочтение другому проекту. Сама станция будет располагаться на довольно низкой орбите. И, двигаясь по ней, будет запасать энергию в специальных аккумуляторах-конденсаторах, а, достигнув некой расчетной точки, прицельно сбрасывать пучок на решетку приемной антенны. При этом размеры как передающей, так и приемной антенн удастся уменьшить до вполне приемлемых размеров.

Космические электростанции, способные обеспечить землян электроэнергией, могут появиться на орбите нашей планеты уже через 15–20 лет, полагают современные специалисты.

НОВАЯ ЖИЗНЬ СТАРЫХ ИДЕЙ

Морошка на… Марсе?

Как вы думаете, может ли расти где-то на другой планете морковка? А морошка? А репа?.. А может быть, подобные растения там уже растут?

Юный техник, 2008 № 11 _14.jpg
Синие мхи на Красной планете

Американские ученые активно разрабатывают методику, позволяющую обнаружить инопланетные растения, сообщает читателям Нэнси Дзян, биометеоролог из Годдардовского института космических исследований НАСА в Нью-Йорке. А поводом стало то, что на одной из 200 с лишним планет за пределами Солнечной системы в июле 2007 года было зафиксировано наличие водяных паров. Теперь с помощью спектрального анализа будут искать в атмосфере планет газы биологического происхождения, такие, например, как кислород или аммиак.

Юный техник, 2008 № 11 _13.jpg

Второй признак — присутствие особых пигментов, подобных зеленому хлорофиллу земных растений. Причем на разных планетах эти пигменты могут быть разными — синим, красным, оранжевым.

Интерес ученых понятен. Там, где есть растительность, недалеко уж до животной, а может быть, и до разумной жизни! Не случайно 60 лет назад, в 1948 году, член-корреспондент Академии наук СССР Г. А. Тихов подготовил и опубликовал доклад на сенсационную по тем временам тему о растительности на Марсе.

«В тех местах Марса, где Солнце ежедневно всходит и заходит, даже на экваторе температура в течение суток колеблется от плюс 30 до минус 50 градусов, — сообщал ученый. — Однако в полярных областях Марса, где Солнце не заходит в течение большей или меньшей части марсианского полугодия, температура меняется очень незначительно, оставаясь постоянно выше нуля.

Вот эти-то полярные места и являются наиболее благоприятными для растительной жизни на Марсе»…

Далее Г.А. Тихов высказал предположение, что растительность на Марсе должна быть низкорослая. В основном это, вероятно, травы и кустарники зелено-голубого, голубого и даже синего цвета. Некоторое сходство с марсианскими растениями, возможно, имеют наши можжевельник, морошка, мхи, лишаи, другие северные и высокогорные растения.

Юный техник, 2008 № 11 _15.jpg

Основатель астроботаники Г.А.Тихов.

«На Земле тоже есть места, для жизни малопригодные, — тундра, высокогорье, низкие температуры, нехватка кислорода, — рассуждал он. — Но живут же и здесь какие-то растения! Так давайте узнаем — какие именно, за счет чего, как они приспособились к экстремальным условиям. А потом посмотрим, нет ли где подобных же условий и в космосе»…

Эти исследования оказались на стыке ботаники и астрономии. А потому Тихов предложил назвать новую науку «астроботаникой», став, таким образом, ее основоположником.

Разноцветные растения

Так может ли расти морошка, к примеру, на Марсе?

Растительность на Земле зеленая только потому, что энергия спектра солнечного света у поверхности нашей планеты, как известно, достигает максимума на его зелено-голубом участке.

Казалось бы, отражая зеленый цвет, растения не получают самую ценную составляющую света. Это так, но интенсивность фотосинтеза не зависит от общего количества световой энергии, а определяется количеством энергии, приходящейся на один фотон, и общим количеством фотонов.

Поскольку голубые фотоны несут больше всего энергии, а Солнце излучает больше всего красных фотонов, то хлорофилл преимущественно поглощает именно красный и голубой цвета, занимая по окраске промежуточное положение между ними (см. рис.).

Юный техник, 2008 № 11 _16.jpg

Распределение спектра хлорофилла А и хлорофилла В.

На других планетах цвет листвы растений тоже должен зависеть от спектра излучения близлежащей звезды.

А процесс фотосинтеза поневоле приспособится к спектру лучей, достигающих поверхности планеты. Так, растения планет, обращающихся вокруг горячей голубой звезды, будут поглощать преимущественно голубой свет и могут иметь желто-красную окраску. Вокруг холодных звезд, таких как коричневые карлики, растения, пытаясь получить как можно больше энергии, скорее всего, должны быть темными, даже черными.

Юный техник, 2008 № 11 _17.jpg_0

Так могут выглядеть растения на планете у голубой звезды.

Словом, растения во Вселенной, получается, могут быть самых разных цветов. Все зависит от того, какое солнце на них светит. Но, кстати, и на Земле у растений листья не только зеленые, можно встретить и синие, и фиолетовые. Так что не исключено, часть земных растений, в том числе и морошка, могла б поселиться на других планетах. И этому есть некоторые подтверждения.

Открытия в «стране чудес»

Вот, например, упомянутый уже Марс. Недавно выяснилось, что на нем есть вода. Правда, существует она в виде льда и очень соленая, но где вода, там и жизнь. Сама же марсианская почва может быть пригодной для… выращивания репы и спаржи! К такому сенсационному выводу позволяют прийти первые данные анализа, проведенного бортовой мини-лабораторией аппарата Phoenix.

Как мы уже рассказывали (см. «ЮТ» № 9 за 2008 г.), высадившийся недавно на Марсе робот-исследователь Phoenix оснащен, кроме всего прочего, черпаком для забора образцов почвы, а также аналитической лабораторией для определения химического состава взятых проб.

Уже в первый месяц работы Phoenix подтвердил предполагаемое ранее присутствие в грунте Марса таких элементов, как магний, натрий и калий. Все это обнаружено в районе под названием «страна чудес» (Wonderland), расположенном неподалеку от Северного полюса планеты.

Образцы, проанализированные лабораторией Phoenix, обладают сильной щелочной реакцией (водородный показатель pH = 8–9). В земных почвах с такой щелочностью живут мириады бактерий и растут многие растения, в том числе овощи.

«Фактически мы обнаружили, что почва на Марсе содержит все необходимые питательные вещества, а также воду в виде льда. Это тот тип почвы, который можно найти во многих земных огородах», — сказал по этому поводу руководитель измерений, проводимых автоматической лабораторией на Phoenix, Сэмюель Кунавес из Университета Тафтса в Медфорде, штат Массачусетс. При этом в марсианском грунте отсутствуют токсичные компоненты. «В такой земле вполне возможно выращивать даже отличную спаржу», — подчеркнул ученый.