Изменить стиль страницы

Вот примеры для пояснения.

Клетка. Ее рабочие органы - митохондрии ("электростанция"), лизосомы (пищеварение - подготовка топлива), оболочки (отграничение, защита и внешние связи). Управление всем этим хозяйством сосредоточено в ДНК генов, в ядре. В них модели, то есть структуры всех белков, и программа, как и когда их выдавать. Управляющие сигналы представлены информационными РНК.

Целый организм. Рабочие органы всем известны: мышцы, легкие, сердце, желудок и прочее. Управляющие - нервная и эндокринная системы. Сигналы - нервные импульсы и молекулы гормонов. Модели для управления - в нервных связях.

Слово "модель" теперь очень распространилось. Когда говорят "модель автомобиля, дома, плотины" - это просто. Воспроизвести строение, внешний вид. Игрушечный автомобиль может бегать, значит, воспроизвели уже функцию. Модель машины можно довести до полной копии, будет как настоящая. Но понятие модели шире. Словесное описание объекта - это тоже модель. Рисунок - тоже. Расчеты, графики функций - тоже. Все они могут быть моделями одного объекта, только разные средства отображения (говорят, разные коды).

Главное качество модели - точность и полнота воспроизведения. Возьмем простой объект - машину. Для машиниста дают краткое описание устройства и работы, достаточное для управления. Для ремонта машины нужно уже более подробное описание. Чтобы построить новую, требуется набор чертежей, схем, расчетов, технология. Все модели - об одном, разница в детальности. Есть модели детальные и есть обобщенные, в которых представлены только структурные блоки. Те и другие модели необходимы для полного понимания объекта.

Еще пример из электроники. Возьмем схемы приемника: есть блок-схема - несколько квадратов и стрелок. Есть принципиальная схема: условными знаками в ней отражены все части и связи. Есть монтажная схема, где детали представлены в их внешнем виде и взаимном расположении.

Возможна неравномерная модель, когда одна часть выделена в подробностях, а другие представлены в общем виде, только чтобы отразить отношение главной части к остальным. Иногда значимую часть выделяют на чертеже жирными линиями, а другие рисуют бледно.

Модель может представлять всю систему - это "полная модель" или только ее часть - "частичная модель". Для моделей можно пользоваться разными наборами знаков и средств - от математики и слов через схемы и рисунки - к физическим моделям из металла, пластика или деталей электроники. Более того, модель можно выразить условным кодом в памяти вычислительной машины.

Существуют два вида моделей: качественные и количественные. Первые представлены словесными описаниями. Они субъективны и неточны, неравномерны как по отражению частей системы, так и по обобщенности. Они пригодны разве что для приблизительного управления системой, но уже построить по ним объект заново никак нельзя: каждый человек допускает произвольную трактовку. Наоборот, количественные модели отражают объект "в масштабе". Это чертежи, цифры, формулы, механические или электронные модели и самое новое - сложные модели, заложенные в ЭВМ. По таким моделям, если они достаточно детальны, в принципе можно построить саму систему. 'Еще одно деление моделей: статические и действующие. Словесное описание, чертеж или набор формул статичны. Человек может только представить, как движется модель. Такие модели без человека не работают. Есть действующие модели. Пример - движущиеся модели машин или модель гидроэлектростанции. Эти - простые. Но можно сделать сложную действующую электронную модель. Можно воспроизвести ее в ЭВМ. Такая модель может управлять объектом без человека.

Для каждого более или менее сложного объекта можно создать много обобщенных моделей - все зависит от "вкуса и умения" их создателя. Это касается не только описательных моделей, но даже действующих. Представьте, сколько моделей можно сделать на один автомобиль.

Не случайно я пользуюсь примерами из техники: ее объекты достаточно сложны и в то же время неизмеримо проще систем "типа живых" - от вируса до общества и биосферы. Для любой технической системы существуют "полные" модели - чертежи, схемы и описания, по которым их можно строить. Для биологических систем сделать это пока нельзя. Мы еще не знаем биологию так подробно, чтобы уметь смоделировать природу.

Означает ли это, что для таких объектов нужно ограничиваться описаниями, словесными моделями, что для них принципиально непригодны количественные, тем более действующие модели? Ни в коем случае! Полных моделей не создать, но обобщенные возможны и необходимы. Без них неполноценно познание и ограничено управление.

Даже в технике, чтобы инженер мог разобраться в незнакомой машине, ему недостаточно посмотреть на нее или получить подробнейшую монтажную схему. Ему необходимы обобщенные модели: блок-схемы, принципиальная схема, характеристики и кривые. То же касается и живых систем.

Нельзя познать организм, если смотреть на него даже через микроскоп. Нужны описания его крупных частей, обобщенные модели. Это касается не только структуры, но и функций. Например, для понимания физиологии организма нужна модель взаимодействия - сердца, сосудов, легких, почек и пр. Ее можно создать и не имея модели клеток, составляющих эти органы. Она поможет понять, как нарушаются функции при некоторых болезнях, например, при пороках сердца, и даже автоматически управлять ими после операции. Но такая обобщенная модель не может разъяснить нам, как возникает рак, потому что это происходит на уровне молекул в клетке. Для этой цели нужна не обобщенная, а полная ее модель, что пока недоступно.

Итак, мы познаем истину через моделирование, создание моделей. При этом для сложных объектов обязателен набор моделей разной обобщенности - детальности.

Важнейший вопрос - соотношение сложности модели и объекта. Невозможно сложность выразить просто, если претендовать на полноту. Не можем же мы нарисовать клетку, чтобы обозначить все молекулы! Для сложных объектов пока существуют только обобщенные модели с разной степенью подробности. Часто однобокие, неравномерные. Впрочем, этот вопрос - об отображении сложности в модели - не так прост. Нельзя говорить категорично. Возьмем природу. В генах, в ДНК зародышевой клетки заложена модель будущего организма. Конечно, генов до ста тысяч, и каждый состоит из тысячи нуклеотидов - букв. Это много. Но все равно живая модель из генов неизмеримо проще всего организма.

Как это можно себе представить? В генах заложена компактная модель, в которой отражена структура и технология. Поэтому в принципе можно предполагать создание искусственных моделей, точно описывающих сборку во много раз более сложных объектов. Однако нам еще далеко до природы.

Перейдем теперь к "технологии" - как создавать модель.

Получение моделей как будто представляет собой отражение объекта, если его рассматривать или слушать. Так же, как объектив фотоаппарата рисует на пластинке негатив, так глаз "рисует" узоры из нейронов в коре мозга. Но... не совсем так. Во-первых, существует настройка рецептора - избирательное тонкое восприятие деталей. Получаются неравномерные модели. Во-вторых, выбор объектов. Разум присутствует уже при восприятии, отбирает информацию. По каким признакам? Под влиянием чего? Скажем пока коротко (до рассмотрения человеческого разума). Первичный отбор информации или объектов для моделирования диктуют чувства ("Что интересно") и убеждения ("Что считаем важным"). Таким образом, субъективное начало присутствует с момента восприятия. Именно поэтому одни и те же сложные объекты каждый воспринимает несколько иными и по-разному изображает их.

Понимание истин... Что это такое? Может быть, просто распознавание фигур? Примерно так и есть. Мы распознаем неизвестное путем сравнения с известным - целиком или по частям. Эти известные фигуры-эталоны, взятые для сравнения, заложены в память разума через обучение. Они привязаны к другим, уже имеющим назначение, обозначение, оцененным чувствами. Мы их "знаем". Наоборот, неизвестные фигуры не имеют названия, применения, их некуда "привязать".