Изменить стиль страницы

Посмотрим, как введение космологических сил отталкивания может привести к резкому изменению времени расширения Вселенной.

Предположим, что космологическая постоянная отлична от нуля. Пусть мир расширяется от состояния очень высокой плотности. Так как вначале плотность вещества велика, силы тяготения, пропорциональные плотности и тормозящие расширение, много больше сил отталкивания.

В ходе расширения рано или поздно плотность упадет настолько, что силы тяготения и отталкивания сравняются. В этот момент мир по инерции будет расширяться без ускорения, с постоянной скоростью. Если эта скорость очень мала, то очень долго будет поддерживаться почти полное равенство сил тяготения и отталкивания и, следовательно, период почти полной остановки расширения, или, как его называют, задержки расширения, будет длительным. Затем плотность вещества все же постепенно упадет и силы тяготения станут меньше сил отталкивания. Теперь мир уже будет расширяться ускоренно под действием сил отталкивания. Подбирая параметры модели, можно сделать задержку расширения очень длительной. Согласно этой гипотезе задержка в расширении была в прошлом. Сегодня мир расширяется ускоренно.

Так, введение космологической постоянной растягивает время расширения Вселенной и может привести его в соответствие с возрастом звезд.

Оценки постоянной Хаббла были пересмотрены в 50-х годах. Еще раньше, в конце 30-х годов, было установлено, что превращение водорода в гелий является основным источником энергии звезд, а в 50-х годах построена современная теория звездной эволюции. Все противоречия с возрастами отпали, отпала и необходимость в космологической постоянной. Уже во второй раз!

А в 1967 году начался период «третьей молодости» идеи о космологической постоянной. К этому времени астрономы открыли и исследовали необычайные объекты — квазары, о которых мы кратко говорили в первой части.

Квазары до сих пор хранят множество тайн и нерешенных проблем. Мы остановимся здесь лишь на двух особенностях квазаров. Во-первых, они обладают огромной светимостью и видны с расстояний даже больше, чем далекие галактики. Чем дальше квазар, тем должен быть меньше его видимый блеск на небе, ослабленный этим расстоянием. В то же время квазары должны подчиняться законам расширения Вселенной и чем дальше, тем с большей скоростью удаляться от нас, а значит, сильнее должно быть в их спектрах «красное смещение».

Итак, при изучении квазаров, ожидалось, что чем меньше их видимый блеск, тем сильнее красное смещение.

Ничего подобного не обнаружили! Для объяснения этого американские ученые В. Петросян, Э. Сальпетер и П. Шекере предположили, что возможной причиной отсутствия зависимости между видимым блеском квазаров и красным смещением в их спектрах могут явиться космические силы отталкивания. Поясним это.

Американские ученые подчеркивали, что квазары, как правило, наблюдаются на огромных расстояниях, гораздо дальше, чем самые далекие галактики, доступные телескопам. Когда мы наблюдаем квазары с большим красным смещением, то есть на больших расстояниях, мы видим свет, давно испущенный. Если он покинул квазары в эпоху, соответствующую задержке расширения Вселенной в теории с космологической постоянной, то и у более близкого, и у более далекого квазара красное смещение будет почти одним и тем же. Это происходит потому, что наблюдения относятся к периоду, когда мир почти не расширялся.

Действительно, пусть свет покинул квазар в эпоху задержки расширения. Он долго идет в почти не расширяющейся Вселенной и поэтому не краснеет. Когда этот луч находится еще на пути к нам, из более близкого квазара выходит луч, который затем одновременно с первым уже в нашу эпоху достигнет наблюдателя на Земле. Оба луча идут вместе в почти стационарной Вселенной и не краснеют. Свет обоих квазаров одинаково покраснеет позже — после окончания эпохи задержки расширения, уже в расширяющейся Вселенной. Следовательно, и относительно близкий, а потому яркий квазар, и далекий — слабый будут обладать почти одинаковым красным смещением. В результате многие квазары будут обладать похожими красными смещениями в спектрах, а видимый блеск их будет весьма различным, и никакой зависимости между этими величинами не окажется.

Аргументы в пользу картины расширения Вселенной с длительной задержкой в прошлом (а значит, в пользу существования космологической постоянной) приводили советские астрофизики И. Шкловский и Н. Кардашев, использовавшие другие особенности в спектрах квазаров.

Была ли в действительности задержка в расширении Вселенной в прошлом? Ответ могли дать только новые наблюдения.

Со времени дискуссии этой проблемы прошло почти двадцать лет. Проведено много новых наблюдений квазаров. Постепенно аргументы в пользу задержки расширения начали «рассасываться», как говорят астрономы-профессионалы на своем жаргоне. Новые наблюдения показали, что отсутствие зависимости между видимым блеском квазаров и красным смещением связано с тем, что истинная светимость их очень и очень разнообразна. Их никак нельзя рассматривать как «стандартные свечи» (в отличие от ярчайших галактик в скоплениях) и поэтому нельзя ожидать проявления рассматриваемой зависимости. Точно так же, как если бы мы взяли свечи самой разной истинной яркости, то их видимый блеск никак не характеризовал бы их расстояние от нас.

Отпали и другие аргументы в пользу расширения с задержкой, а с ними отпала и необходимость в существовании космологической постоянной. Отпала уже в третий раз!

Но, как говорят, джинна, выпущенного из бутылки, нелегко загнать обратно. Идея о том, что космологическая постоянная не равна нулю, оказалась живучей.

Ясно одно, что если космологическая постоянная и отличается от нуля, то очень мало. Но доказать, что она точно равна нулю, путем наблюдений, конечно, очень трудно. Может быть, действительно существуют космические силы отталкивания?

Это заставляет физиков задуматься над природой таких сил. Подробнее мы будем говорить об этом в разделе «Почему Вселенная такая». Сейчас отметим только, что энергия взаимодействия виртуальных частиц вакуума (об этом мы говорили в главе «Черные дыры и кванты» в 1-й части) приводит к тому, что в пустоте может быть все время хоть и малая, но отличная от нуля плотность энергии. Свойства вакуума таковы, что вместе с плотностью энергии должны появиться и натяжения (как могут быть натяжения в упругом теле). Вот присутствие этих натяжений и приводит, как можно показать, к возникновению универсальных гравитационных сил отталкивания, о которых мы говорили.

Подчеркнем, что физикам далеко еще не все ясно с природой вакуума.

В последнее время развитие теории физики элементарных частиц делает вероятным заключение о том, что в нашу эпоху и в обозримом прошлом силы гравитации вакуума вряд ли играли заметную роль в эволюции Вселенной. Но вот вблизи самого начала расширения, в первые мгновения, возможно, их роль была определяющей, свойства вакуума там были совеем другие. Об этом, как уже сказано, мы поговорим далее, а здесь заметим, что настало, по-видимому, время «четвертой молодости» идеи о космологической постоянной.

Наверное, у читателя осталось чувство какого-то скептицизма по отношению к специалистам, которые то находят аргументы в пользу идей о гравитации вакуума, то находят аргументы против нее, то опять за, и так много раз. Не подрывают ли такие колебания веру в надежность научных исследований, веру в науку? О похожей ситуации высказался в уже цитированном памфлете С. Ликок: «Не подумайте, что я высказываю неверие в науку или неуважение к ней (в наши дни это было бы так же чудовищно, как во времена Исаака Ньютона не верить в Святую Троицу). Но все же... Так что подхватывайте свои книжки, следите за развитием науки и ждите следующего астрономического конгресса».

Ну что ж, если оставить шутки, то в истории науки такое положение известно. К какой-нибудь научной идее подходят с разных сторон, на разном уровне развития физики, с разной степенью вооруженности. Штурмуют сложнейшую проблему много раз, пока не решат ее. И, как правило, за ней появляются проблемы еще более глубокие и сложные.