Изменить стиль страницы

Сложный эксперимент увенчался успехом: ЗС273 оказался двойным источником, с двумя очень маленькими компонентами, удаленными друг от друга примерно на 20 угловых секунд. Столь точное положение источника позволило американскому астроному М. Шмидту на обсерватории Маунт Вилсон отождествить радиоисточник с едва заметным оптическим следом. Получалось, что радиоволны излучала звезда?..

Квазары, или что делает практика с теорией

После отождествления непонятного радиоисточника с оптической звездой предстояло получить его спектр.

Получение спектров слабых объектов — невероятно долгая и утомительная работа. Она требует от исследователя терпения, аккуратности и внимания.

Маартену Шмидту повезло. Четыре линии спектра из шести, несомненно, принадлежали либо водороду, либо атомам другого элемента, «ободранным» до последнего электрона. Но они находились совсем не на тех местах, где положено, и, как предполагает Шмидт, смещены к красному концу спектра на 16 процентов.

И сразу все четыре линии совпали с линиями излучения водорода.

Казалось бы, можно торжествовать победу. Но не тут-то было!.. Если допустить, что обнаруженное красное смещение спектра имеет космологический характер, то объект ЗС273 должен находиться на расстоянии примерно двух с половиной миллиардов световых лет и улетать от нас со скоростью порядка 45 тысяч километров в секунду! Если из такой невероятной дали он все-таки виден нам, то он вообще не звезда! Чтобы светить на таком расстоянии, он должен быть ярче целой галактики!

Можно, правда, предположить, что красное смещение спектра вызвано воздействием мощного поля тяготения на проносящиеся в нем кванты (фотоны). Тогда загадочный объект может быть расположен недалеко от нас и представлять собой ком плотной раскаленной материи. Однако вид спектра объекта характерен для облака раскаленного газа, а не для плотного тела.

Занимательно о космологии i_081.png

Астрономы кинулись к фототекам. На крупных обсерваториях в специальных помещениях хранятся тысячи и тысячи пластинок, полученные за много лет. Оказалось, что странный объект фотографировался множество раз. В фототеке гарвардского «небесного патруля» обнаружились снимки, сделанные еще в конце прошлого столетия. На них уже были видны объекты, привлекшие внимание. Но до самого последнего времени они считались просто слабыми звездами, принадлежащими нашей Галактике; звездами, единственная особенность которых, как считалось, заключалась в том, что они испускали слишком много ультрафиолетовых лучей. Потому их и называли голубыми звездами.

Пользуясь старыми негативами, наблюдатели выяснили, что блеск ЗС273 за несколько лет изменился примерно на 50 процентов. Это означало, что звездоподобный объект по размерам не мог быть особенно большим. Иначе он бы не мог «подмигивать» с таким коротким периодом. Стало быть, это не галактика, это не облако, это… вообще неизвестно что такое. Квазизвезды — как будто звезды, — стали их называть наблюдатели; затем соединили первый и последний слоги первого слова английского названия «quasistellar object»; получилось привившееся сегодня название — «квазар».

Вслед за объектом ЗС273 были исследованы и другие квазары. К сегодняшнему дню получены спектры более сотни этих удивительных объектов, вопрос о природе которых еще далеко не решен. Астрономы ухитрились получить спектр такого удаленного квазара, линии излучения которого оказались сдвинутыми на 288 процентов к красному концу спектра. Двести восемьдесят восемь процентов означают, что принимаемая длина волны почти в четыре раза больше истинной. Расстояния до таких квазаров, если считать вселенную построенной в виде модели Фридмана, должно быть около восьми миллиардов световых лет.

В 1965 году видный астрофизик Дж. Гринстейн писал: «В качестве конкретной модели (заведомо не объясняющей вариации блеска) можно представить себе квазар как возбужденное газовое облако диаметром 600 световых лет с массой 109 солнечных масс. В настоящее время кажется весьма вероятным, что источником энергии сверхзвезды могут быть грандиозные взрывы, высвобождающие либо ядерную, либо гравитационную энергию».

Поистине прав физик У. Корлисс, когда говорит: «Время от времени госпожа Природа подкрадывается к ученым и дает им хорошего пинка… С тех пор как квазары в начале 1960-х годов появились на астрономической сцене, с лиц астрономов и космологов не сходит выражение недоумения. Никто не знает, что такое квазары…»

Впрочем, квазары не ограничились безобидной ролью новой разновидности небесных объектов с неизвестной родословной. Они претендовали на большее.

Путешествие по оси t

Буквой «t» обычно обозначают время. Скептику в пору усмехнуться: начинаются, дескать, фантазии. Кому сейчас не известно, что только в лихих фантастических повестях герои путешествуют в завтра и вчера, как будто это соседние троллейбусные остановки.

Используют прием перемещения по времени и авторы научно-популярных книжек. Правда, для этого им приходится привлекать на помощь добрую волю и развитое воображение читателей. Отличительным признаком начала такой апелляции к читателю бывают обычно слова: «представим себе, что…»

В астрономии со временем дела обстоят иначе. Автор уже говорил, что астроному достаточно направить телескоп на небесный объект, отстоящий от Земли, скажем, на тысячу световых лет, чтобы увидеть его таким, каким он был тысячу лет назад. Свет, донесший информацию к нам на Землю сегодня, родился и начал свое путешествие во времена княжения на Руси Святослава и его войны с Византией, за два года до рождения Абу-Рейхана-Мухаммеда ибн-Ахмеда ал-Бируни — выдающегося хорезмского энциклопедиста и самого знаменитого астронома X века.

Но вот в окуляре инструмента иной объект. Красное смещение линий его спектра позволяет определить расстояние в миллион световых лет. Значит, мы видим его сейчас таким, каким он был в те далекие времена, когда наши уважаемые предки еще не очень твердо стояли на двух ногах. Углубляясь дальше в пространство, мы тем самым проникаем и в глубины времени. Внегалактическая астрономия вывела нас за пределы ста тысяч световых лет (это примерный диаметр нашей Галактики) и познакомила с небесными телами, находящимися в том состоянии, в каком их сотворила природа миллиарды лет назад…

Открытие и исследование спектров квазаров дали возможность астрономам заглянуть еще дальше по времени, примерно на 8 миллиардов лет назад. В самые последние годы получены спектры с таким красным смещением, при котором длины принимаемых волн увеличиваются даже больше, чем в три раза.

В мае 1965 года М. Шмидт обнаружил, что квазар ЗС9 имеет красное смещение, которое соответствует скорости, равной 80 процентам скорости света. Это уже 9 миллиардов световых лет. В 1967 году был опубликован список, содержащий 103 квазара. Самое большое красное смещение спектра оказалось у квазара PKS 0237–23, открытого австралийскими радиоастрономами. Скорость удаления этого объекта относительно Земли равна 247 тысяч км/сек, а расстояние, получаемое по закону Хаббла при H = (100–75) км/сек на мегапарсек, равно 8–10 миллиардам световых лет. А есть ли возможность еще приблизиться к «началу», к тому самому таинственному и жуткому моменту, когда время и радиус вселенной (мы имеем в виду фридмановскую модель) находились в «нуль-пункте»? Квазары в этом нам не помощники. Есть подозрение, что раньше, чем 8–10 миллиардов лет назад, ни звезд, ни галактик, ни квазаров не существовало. Нужно искать какой-то иной источник более ранней информации…

И вот в 1965, урожайном на открытия году лаборатория телефонной компании «Белл» в Нью-Джерси испытывала радиотелескоп высокой чувствительности. Одну за другой убирали техники помехи, налаживая систему. Наконец остался только небольшой шумовой фон, не меняющийся ни от направления, ни от времени работы.