Процесс измерений с помощью магнитометров тогдашних конструкций протекал медленно до утомительности.
Устанавливать образец всякий раз нужно очень точно; делая замеры, необходимо учитывать много посторонних факторов, вводить поправки на действие магнитного поля Земли, на присутствие в лаборатории железных предметов и т. д.
Обработка результатов измерений тоже утомительна и громоздка. Для вычисления каждого из значений намагниченности образца приходится исписывать цифрами и замысловатыми уравнениями страницы.
Но недостатки магнитометрического метода не исчерпываются тем, что работа с магнитометром сложна и кропотлива.
Есть у этого метода недостаток и посерьезнее.
Работая с магнитометром, трудно найти истинные данные о магнитных свойствах испытуемого материала.
В этом виновен даже не сам прибор; причина ошибок, возникающих при использовании магнитометрического метода, коренится в природе самих испытуемых образцов.
Ошибки возникают вследствие любопытной особенности намагниченных брусков и стержней.
Магниты, как известно, создают вокруг себя силовое поле, превращают окружающее их пространство в область, где проявляется действие магнитных сил.
Всякий железный предмет по соседству с магнитом тоже становится магнитом.
Но магнит действует не только на окружающие предметы. Ведь и сам он находится в зоне, где действуют порожденные им магнитные силы.
Магнит действует и на самого себя!
Это кажется парадоксальным, чем-то напоминающим басню о бароне Мюнхгаузене, поднявшем самого себя за волосы, но тем не менее это неоспоримый факт.
Направление магнитных силовых линий по отношению к породившему их магниту таково, что магнитное поле стремится как бы перемагнитить его, образовать северный магнитный полюс на том конце, где у магнита находится южный, и наоборот.
Один конец магнита действует на другой: северный полюс на южный, южный на северный.
Этим воздействием ослабляется намагниченность образца. Размагничивающее действие проявляется неодинаково у образцов разной формы. Чем короче магнит, чем меньше расстояние между его полюсами и чем он толще, тем больше у него размагничивающий фактор, тем сильнее ослабляет он свою же собственную намагниченность.
В одной и той же намагничивающей катушке, в совершенно одинаковых условиях, образцы, сделанные из одного и того же материала, но отличающиеся своей формой, намагнитятся по-разному.
Действие их на магнитометр будет неодинаковым. Показания прибора зависят от формы, которая придана испытуемому образцу.
Отклонения стрелки прибора говорят о магнитных свойствах не самого железа как вещества. По этим отклонениям можно судить лишь о том, как намагничивается именно этот определенной, характерной формы стержень или брусок.
Для того чтобы по показаниям магнитометра можно было рассчитать магнитные свойства железа, — а именно эти свойства и нужно выяснить, — необходимо знать величину размагничивающего действия для каждого данного образца; только тогда можно будет внести нужные поправки в результаты измерений.
Однако учесть размагничивающее действие очень трудно. Теория говорила, что размагничивающий фактор можно точно рассчитать только для образцов, имеющих форму сложного геометрического тела — правильного эллипсоида.
Изготовить из железа правильные эллипсоиды — дело невероятно трудное, а брать для исследования стержни и бруски, которыми пользовались исследователи, значило заранее обрекать себя на невозможность строгой теоретической обработки результатов измерений.
Существование у магнитов размагничивающего действия давно уже не представляло собой секрета. Предшественники Столетова знали об этой особенности образцов, с которыми они работали.
Пытаясь отделаться от ошибок, возникающих при пользовании магнитометрическим методом, ученые придумывали всяческие ухищрения.
Вебер, например, стремясь ослабить размагничивающее действие, изготавливал образцы в виде очень длинных и тонких цилиндров.
Фон Квинтус-Ицилиус пытался придать своим образцам форму эллипсоидов — тел, для которых можно теоретически рассчитать размагничивающий фактор.
Но всеми этими ухищрениями можно только уменьшить ошибки, исключить же их целиком, действуя такими способами, нельзя. Нельзя же до бесконечности удлинять образцы, чтобы свести на нет размагничивающий фактор. Изготавливать эллипсоиды? Но и это тоже не выход. Не говоря уже о том, что сделать точный эллипсоид почти невозможно, метод фон Квиитуса-Ицилиуса тоже не гарантировал от появления ошибок. Анализируя этот метод, Столетов установил: для того чтобы быть вполне уверенным в результатах исследования, нужно брать очень длинные эллипсоиды. В противном же случае малейшая ошибка, допущенная при измерениях, сильно отразится на расчетах, в особенности когда придется иметь дело со слабыми полями.
Что же делать? Как определить истинные магнитные свойства железа?
Все исследователи топчутся в каком-то заколдованном круге. Для исследования магнитных явлений они, как издавна повелось, вооружаются магнитометром. А применение магнитометра неизбежно влечет за собой применение образцов в виде стержней, брусков, эллипсоидов, а значит, и появление ошибок, вызываемых размагничивающим действием, которое производят концы магнитов.
И тем не менее исследователи не пробуют разорвать порочный круг, в который заводит их магнитометрический метод, не пытаются найти какой-нибудь иной способ исследования магнитных явлений.
Какое-то схоластическое преклонение перед установившимися традициями довлеет над этими учеными. Покорно мирятся они с тем, что их образцы обладают размагничивающим фактором.
Выхода, как будто, и быть не может: как же уберечь магнит от действия создаваемого им же самим магнитного поля? Всякий магнит любого известного типа — и прямолинейный и подковообразный — окутывает себя идущими от одного полюса к другому силовыми магнитными линиями.
Но кто сказал, что магниты всегда обязаны иметь концы?
А что, если намагниченный брусок согнуть не в подкову, а смелее — в кольцо? Сомкнуть один полюс магнита с другим?
Разве от этого магнит перестанет быть магнитом? Нет, конечно. Но кольцеобразный магнит не сможет действовать сам на себя! Ведь он не создает вокруг себя магнитного поля!
У кольцеобразного магнита не будет размагничивающего фактора. Намагничение кольцеобразного образца не будет зависеть от размеров и формы сечения образца. Данные о магнитных свойствах кольца будут данными именно о магнитных свойствах материала, из которого оно сделано.
Итак, чтобы ликвидировать действие размагничивающего фактора, надо пользоваться образцами, сделанными в виде кольца, тороида. Кольцо, именно кольцо поможет магнитологам выбраться из порочного круга, в котором они находятся.
Как намагнитить кольцо — это ясно. Его надо обвить проволокой. Когда по обмотке пойдет электрический ток, кольцо намагнитится.
Но как узнать, как сильно оно намагнитилось?
Магнитометр в этом случае ничем не сможет помочь. Ведь у кольца нет концов, оно не создает в окружающем пространстве магнитного поля, в этом его преимущество перед образцами другой формы, но в этом кроется и невозможность применить для исследования кольцеобразных образцов магнитометр. Кольцо не будет действовать на магнитную стрелку этого прибора.
Как же теперь поступить? Ведь прежний метод исследования магнитных свойств не годится.
Но неужели, исследуя магнитные явления, надо обязательно хвататься за магнитную стрелку, как за якорь спасения, следовать традиционным представлениям о том, что силу магнита надо измерять с помощью магнита же?
Разве нельзя магнитные явления изучать с помощью электрических приборов? Ведь магнетизм и электричество тесно связаны между собою, это уже давно известно.
Если помахать мотком проволоки перед магнитом, в проволоке возбудится электрический ток. То же самое произойдет, если начать двигать магнит перед неподвижным мотком. В обоих случаях соблюдается условие, необходимое для возникновения электрического тока под действием магнитного поля: проволока пересекает магнитные силовые линии.