Изменить стиль страницы

Другая опасность в том, что кабель-трос, на котором подвешено оборудование, приходится использовать и во время качки. Это создает в кабеле чрезвычайно сильные напряжения, и при определенных условиях он может разорваться.

Здесь уместно привести цифры, характеризующие так называемые гидродинамические пиковые силы, создаваемые волнением моря. Они особенно опасны во время подъема и опускания приборов и наблюдательных камер. Так, средняя величина пиковой силы засасывания при волнении 5 баллов составляет примерно 10 000 килограммов. Пиковые силы изменяются от 9000 до 18 000 килограммов, а в отдельных случаях могут достигать еще большей величины.

Затруднения часто возникают и при одновременном спуске удерживающего троса и электрического кабеля. Были случаи запутывания, и подача энергии прекращалась.

Из отчета В. Биба следует, что его батисфера ни разу не коснулась дна. Он считал, что это было бы небезопасно для кабины, разделяющей до какой-то степени колебания надводного судна. Он говорит, что ошибки в расчете длины троса при погружении на дно могут привести к тому, что излишки его соберутся на дне, трос ослабнет и может запутаться за какое-либо подводное препятствие. По этой причине батисферу опускали в средние слои океана и ни в коем случае не до самого дна. И все равно В. Биб неоднократно упоминал о подавленности, которая охватывала его в батисфере и мешала сосредоточиться для наблюдений.

Американец Р. Терри описывает случай запутывания троса, происшедший не так давно со сферой, несущей внутри фотоаппарат. Принадлежавшая Южнокалифорнийскому университету, эта сфера была названа бентографом и несколько лет успешно эксплуатировалась для фотографирования морского дна. Однажды у берегов Южной Калифорнии бентограф был спущен в одно из глубоких мест океана. Когда стали поднимать аппарат, почувствовали, что трос за что-то зацепился, исследовательское судно «Велеро» оказалось как бы на прочном якоре. После нескольких часов бесплодных стараний поднять сферу трос оборвался, похоронив дорогостоящее устройство на дне Тихого океана.

Считается, что безопасность опускаемых на тросе аппаратов значительно возрастет при использовании нейлоновых канатов. Нейлон практически не имеет веса в воде — в этом его преимущество. Кроме того, эластичность таких канатов должна смягчать толчки. Однако возникает опасение, что из-за эластичности нейлона кабина будет прыгать вверх и вниз, как на резиновой подвеске. Несмотря на прочность, нейлон быстро истирается и легко режется; тепло, образующееся при трении, способствует его разрушению.

Японский исследователь Наочи Нноуи, работавший на «Куросио-1» в 1961 году, заявил, что операции на глубине были не только дорогостоящими, но часто и опасными, особенно в тех случаях, когда требовалось перемещать аппарат по дну со скалистым рельефом. Н. Иноуи говорит об опасности, несмотря на то, что гидростаты последних конструкций снабжены устройствами для отдачи аварийного груза и самостоятельного всплытия на поверхность.

Следующая ступень в развитии подводных наблюдательных устройств с прочным корпусом — это исследовательские подводные лодки. Они призваны решать уже качественно новую задачу: активное исследование Мирового океана во всем диапазоне глубин. Подводные лодки помогут океанологии, надежно обосновавшейся пока в двух измерениях — на поверхности моря, проложить путь в третье измерение — в глубину.

Впрочем, сама идея использования для подводных исследований специально оборудованных судов не нова. О ней говорили еще в средние века. Например, английский епископ Джон Уилкинс в книге «Математическая магия», опубликованной в 1648 году, описывает огромный подводный корабль, который «окажет неописуемую пользу для подводного исследования». «Я подразумеваю не только сокровища погибших кораблей, — пишет Уилкинс, — но и те многообразные естественные богатства, которые находятся в глубинах морей и которые гораздо легче найти и извлечь со дна моря с помощью указанного корабля, чем обычным способом, ныряя с лодки». И наконец: «Произведенные наблюдения будут записаны, а затем, если это окажется необходимым, напечатаны. Многочисленные семьи смогут проводить всю свою жизнь на подводном корабле; дети их появятся на свет и даже вырастут, не зная, что такое земля, до того дня, когда они, обнаружив мир, существующий над водой, будут изумлены до глубины души».

Мечты о создании подводных исследовательских кораблей сменяли одна другую. Но обратимся к сегодняшнему дню, когда они, наконец, начали воплощаться в действительность.

Подводные корабли науки

Техника и душа — новое в жизни человека и вечное ее начало, новая радость, рожденная их слиянием.

А. Сент-Экзюпери
Дорогами подводных открытий i_004.png

Научно-исследовательские подводные лодки, отличающиеся от своих военных прародителей формой, конструкцией, возможностями и сферой применения, имеют много общих с ними механизмов и свойств. Поэтому, оценивая технические характеристики, придающие подводному судну качества исследовательского корабля, обратимся сначала к обычной (не атомной) подводной лодке.

В действительности она представляет собой ныряющую лодку, поскольку большую часть времени находится на поверхности моря и способна погружаться только на ограниченный срок. Поэтому при создании подводных лодок приходится учитывать не только условия подводного плавания, но и считаться с требованиями плавания в надводном положении. Ее форма, заимствованная от надводного корабля, обеспечивает ей остойчивость над водой. Лодка снабжена мостиком для визуальной навигации, двумя гребными винтами, двигателями внутреннего сгорания и обычным оборудованием для судовождения и связи. После погружения водоизмещение подводной лодки возрастает, и по условиям работы она становится больше похожей на самолет или дирижабль, чем на надводный корабль. «Оторвавшись» от поверхности моря, она движется в трех измерениях, и ее остойчивость и сохранение заданной глубины требуют постоянного внимания, Всплытие и погружение ее имеют много общего со взлетом и посадкой самолета. Носовые и кормовые горизонтальные рули при изменении глубины играют такую же роль, как рули высоты. И в том и другом случаях механические повреждения могут повлечь за собой последствия более тяжелые, чем при движении по земле или воде.

Работа под водой для нас, привыкших жить, двигаться и общаться в земной атмосфере, требует отрешения от многих навыков и представлений. Различия в химическом составе, плотности, сжимаемости и электропроводности воздуха и воды так велики, что предъявляют совершенно различные требования к устройству и оборудованию самолетов и подводных кораблей. Как только волны сомкнулись над лодкой, она вступает в новый и непривычный мир. Слегка увеличившееся давление на уши свидетельствует, что все отверстия герметически закрыты, и при достаточном удалении от поверхности воды всякое ощущение движения как бы утрачивается.

Плавание лодки напоминает полет самолета в тумане, с той разницей, что обеспечивающие подводный ход гребные электромоторы почти не производят шума. Обычный контакт с внешним миром теряется, и навигация, и маневрирование становятся «слепыми» и выполняются при помощи остроумных приспособлений, специально изобретенных для подводных лодок.

Подводная лодка перемещается в среде, почти в 800 раз более плотной, чем воздух. Давление воды растет с глубиной, и поэтому прочному корпусу лодки придается форма удлиненного эллипсоида, чтобы стальные пластины корпуса, благодаря своей кривизне, могли легче противостоять этому давлению.

При движении лодка с помощью горизонтальных рулей удерживает глубину и, таким образом, находится в состоянии динамического равновесия. Под водой лодка в отличие от надводного корабля не испытывает качки, но ее равновесие неустойчиво — она может удерживаться на глубине и в правильном положении только при определенной весовой нагрузке и строго зафиксированном ее распределении. Положительная плавучесть, необходимая для всплытия, осуществляется с помощью главных балластных цистерн, расположенных снаружи прочного корпуса, между ним и тонкой наружной обшивкой — легким корпусом. Эти цистерны продуваются сжатым воздухом, выгоняющим воду через находящиеся в их нижней части отверстия — кингстоны, а заполняются для погружения посредством открытия клапанов вентиляции вверху цистерн. Так как давление внутри цистерн главного балласта все время равно внешнему, они не требуют конструктивного усиления. Другая, совершенно независимая система уравновешивания подлодки и регулировки ее дифферента[5] состоит из носовой и кормовой дифферентных цистерн и уравнительной цистерны в средней части. Уравнительная служит для поддержания нейтральной (нулевой) плавучести, изменяющейся по мере расходования горючего и других запасов.

вернуться

5

Дифферент — угол продольного наклонения судна. Если углубление носа больше, чем углубление кормы, то судно имеет дифферент на нос, и наоборот.