Самая маленькая птичка, которую пытаются сымитировать в первую очередь, — колибри[102]. Дрон, разрабатываемый компанией Aerovironment, носит наименование Hummingbird, что и означает «Колибри». Колибри взята за прообраз не просто так: при пикировании птичка пролетает за секунду до 400 длин своего корпуса (среди боевых самолетов ничего такого пока нет), способна летать назад без разворота и имеет самую большую скорость воздушного торможения — как в природе, так и среди искусственных летунов. Размах крыльев и масса Hummingbird — 16,5 сантиметров и 19 грамм. Сюда входит вес всех полетных систем и опционального почти невесомого обтекателя в форме тела колибри, призванного придать аппарату сходство с птичкой.
«Колибри» способна весьма быстро ускоряться и останавливаться и даже летать назад без разворота корпуса, при этом транслируя видео через встроенную камеру. Кроме того, дрон может в течение двух минут зависать в условиях бокового ветра со скоростью 2,1 метра в секунду без сноса, пролетать сквозь двери, а его максимальная скорость ограничена 18 километрами в час.
Правда, вызывает сомнение, что в условиях средней полосы «Колибри» могла бы быть столь же неприметной, как воробей, — скорее она выступает по разряду «заблудившегося попугая», способного привлечь внимание каждого. Да и весит она не 2 грамма, как настоящая колибри. Но заметим — это только демонстрационная версия, и результаты еще впереди.
Дроны-насекомые — также важное направление создания систем слежения и, возможно, оружия. При этом технология производства роботов-насекомых, недавно созданная в Гарвардской лаборатории мини-роботов, носит массовый характер, т. е. применяется не отдельный робот-пчела, а пчелиный рой дронов[103]. Это настоящая нанотехнология с печатью электроники прямо на робопчелах, словно на обычных печатных платах. Это технология сборки МЭМС/НЭМС — с ее использованием может быть собрано любое электромеханическое устройство в промышленном масштабе.
На работе и в банке, в компьютерной и в сотовой телефонной сети вы оставляете свои следы, мы под контролем. Возможно, мы захотим забыть об этом. Выключим телефон — и на рыбалку, туда, где только мы и нетронутая природа. И нам невдомек, что стрекоза, присевшая на минуту на стебель травы, смотрит своими фасетчатыми глазами неспроста. Увы — и здесь мы не одни!
А если эти насекомые жалят? Их жало может быть оснащено любым смертельным ядом. Их рой — верная смерть.
Дроны могут быть разработаны для различных сред и ландшафтов: от пустынь до влажных лесов Амазонки. Одиночество не гарантируется и дайверу, плавающему в глубинах различных морей. Инженеры Политехнического университета Виргинии (США) разработали подводный дрон, который выглядит и плавает, как медуза[104]. При этом он использует инновационную систему движения, в которой нет места электричеству: искусственные мышцы на основе сплавов с «памятью формы» сокращаются под действием тепла. «Мышцы» робомедузы представляют собой многослойные углеродные нанотрубки (диаметром 1,6 миллиметров), покрытые наночастицами платины и завернутые в никель-титановую оболочку. Когда топливо — смесь кислорода и водорода — поступает в трубки, происходящая в них экзотермическая реакция активирует никель-титановые поверхности мышц, и они сокращаются.
В качестве возможной сферы применения подводного дрона авторы называют подводные поисково-спасательные и исследовательские операции. Однако финансирование разработки, ведущейся по программе MURI Отдела исследований ВМС США, показывает, что у робота, копирующего распространенную медузу и не производящего при движении шума (ни моторов, ни винтов, выхлоп — вода), могут быть и иные, не столь мирные приложения.
Коллективное поведение — как это было в случае дронов-пчел — основание для создания дронов, эмитирующих неживые объекты. Так, инженеры Массачусетского технологического института разработали алгоритм взаимодействия автономных миниатюрных модулей — дронов, которые авторы назвали «умный песок»[105]. Алгоритм позволяет модулям копировать форму внешних объектов, не прибегая к централизованному управлению. Устройство-прототип сегодня довольно большое — 10 миллиметров в поперечнике. Однако исследователи намерены дойти до наномасштабов.
Такой «умный песок», или даже более мелкий, называемый «умной пылью», будет в состоянии эмитировать различные ландшафты и скрывать то, что действительно за ним находится. Это обеспечит незаметность большую, чем у хамелеона или камбалы, копирующих на своих кожных покровах раскраску внешней среды.
Вам хорошо знакомо понятие «мираж»? Но речь идет не о таком, который можно руками потрогать, а о мираже смертельно опасном — неожиданно распадающемся на рой смертельно жалящих дронов.
Риск непреднамеренной «конверсии» военных технологий. Полицейские и иные применения.
Риск любопытства. Совпадение интересов военных при разработке новых систем оружия и «любопытства» ученых в исследовании новых явлений.
Риск тотального контроля. Дроны-насекомые — шпионы и убийцы.
6.4. Самоходный чип и кошмар Дрекслера
Серая слизь — гипотетический, предложенный Дрекслером, сценарий конца света, связанный с успехами молекулярных нанотехнологий и предсказывающий, что неуправляемые самореплицирующиеся нанороботы поглотят всю биомассу Земли.
Роботы, создаваемые с применением нанотехнологий, могут быть самых разнообразных размеров. Нет принципиальных препятствий в создании огромных монстров, таких как в сериалах о трансформерах. Но настоящие чудеса находятся на противоположном полюсе — это нанороботы.
И закоперщиками здесь выступают не только военные. Так, в рамках Национальной ассоциации астрономов (Великобритания) предложено использовать для изучения других планет описанную ранее «умную пыль» — компьютерные микрочипы в пластиковой оболочке, которые смогут менять свою форму при подаче электрического импульса и таким образом двигаться в заданном направлении. По мнению профессора Центра исследований в области наноэлектроники в Глазго доктора Джона Баркера, разработчика таких систем, речь идет о формировании роев нанодронов, взаимодействующих друг с другом при помощи беспроводных сетей.
«Умная пыль» — сложная кибернетическая сеть. Большинство частиц могут осуществлять коммуникации с ближайшими соседями, но когда их много, они могут общаться на куда больших расстояниях. Так ведут себя атомы в кристалле: за счет взаимодействия с ближайшими соседями обеспечивается дальний порядок. Только для «умной пыли» такая связь управляема.
Еще одной особенностью «умной нанопыли» является то, что она составляет — пусть примитивный — распределенный мозг. Повреждение любой его части не является критическим. Все части взаимозаменяемы в противоположность тому, что мы имели в случаях нейронных сетей. Этакая нанотехнологическая гидра!
В нашем мире есть живой аналог такой структуры. Это всем хорошо знакомые и при этом абсолютно неизвестные слизевики. Это очень необычный организм, который мы часто видим на южной стороне деревьев, что иногда позволяет нам ориентироваться на местности. Но на южной стороне слизевик не вырос, он туда приполз. Без рук, без ног, без глаз, без нервной системы!
Тело слизевика не такое, как у большинства организмов[106]. Наш организм, как и у подавляющего большинства живых организмов, исключая, конечно, вирусы, состоит из клеток: быть может, одной, зачастую — из множества. А у слизевика клеток нет. Его тело — плазмодий: множество «клеточных» ядер, погруженных в общую среду. Плазмодий активно перемещается в направлении источников пищи. Он движется в направлении более влажных мест и навстречу потоку воды. Пользуясь этой особенностью плазмодия, его можно «выманить», например, из пня. Для этого нужно поместить от края пня вглубь его под наклоном полоску стекла, а сверху нее положить фильтровальную бумагу, конец которой погрузить в сосуд с водой. Ток воды может вызвать вползание плазмодия на стекло, тогда можно не только рассмотреть его под микроскопом, но и проследить, с какой скоростью он перемещается.
102
По материалам Wired, http://science.compulenta.ru/670512/
103
По материалам Гарвардской лаборатории мини-роботов. http://science.compulenta.ru/661605/