Изменить стиль страницы

В XIX веке, в те времена, когда научные знания еще не стали вотчиной одних только ученых и фанатов самообразования, американский поэт и прозаик Эдгар Аллан По настолько заинтересовался парадоксом ночного неба, что выдвинул свое объяснение и включил его в произведение, которое он сам называл стихотворением в прозе:

«Будь череда звезд бесконечной, театральный задник небесных декораций являл бы собой сплошное свечение, словно бы Галактика решила перед нами похвастаться — не было бы ни единой точки на всем протяжении неба, где не нашлось бы звезды. Исходя из этого, единственный способ постичь при таком положении дел существование пустот, обнаруживаемых нашими телескопами в бесчисленных направлениях, это предположить, что толщина невидимого небесного задника столь невообразима, что ни один луч света не способен пробиться к нам сквозь него»[16].

И что в этих рассуждениях не так? Да нет, вообще-то все верно. В бесконечно большой Вселенной с бесконечно большим числом случайно разбросанных в пространстве звезд ночное небо ослепительно сверкало бы. Значит, нужно разобраться, какое из исходных допущений ошибочно. А может, свет многих далеких звезд приглушен встретившейся ему на пути звездной пылью? — спросите вы. Но пыль не в состоянии полностью затмить звездный свет. В межзвездном пространстве действительно есть пыль, однако на практике она нагревается от света звезд и частично отражает его, так что общее количество света не меняется. Что касается ученых, впервые затронувших эту тему, среди них наиболее известен английский астроном Эдмунд Галлей (1656–1742), чье имя получила комета, но лавры человека, первым сформулировавшего парадокс ночного неба, достались немецкому астроному и физику Генриху Вильгельму Ольберсу (1758–1840): «Вселенная бесконечно огромна и вместе с тем бесконечно стара. Любые попытки ограничить ее во времени и пространстве слишком сковывают это Божье творение. Возможно, нам стоит пожертвовать одним или обоими этими допущениями — бесконечностью размеров и бесконечностью возраста, и тогда мы сможем разгадать тайну черноты ночного неба».

Мы, как и современная наука, придерживаемся теории, что Вселенная возникла 13–15 миллиардов лет назад в результате Большого взрыва (см. главу «Вселенная — это вам не сарай»). Образовавшись из одной-единственной точки, Вселенная расширялась, сперва очень стремительно, а потом медленнее. Она продолжает расширяться и по сей день, и «граница» ее сейчас пролегает примерно в 13–15 миллиардах световых лет от нас. Возможно, ночная темнота объясняется тем, что там, за этой границей, нет звезд, которые могли бы добавить ночному небу света, как если бы частокол деревьев, о которых я упоминал чуть раньше, кончался в двадцати километрах от нас, и нам были бы видны пробивающиеся с той стороны леса узкие полоски света.

Что ж, неплохая попытка объяснить ночную тьму, но один английский математик доказал, что даже при ограниченных размерах нашей Вселенной в ней и до предполагаемой границы вполне достаточно звезд, чтобы обеспечить нам еженощную яркую иллюминацию. Так что придется искать другое объяснение.

Идея о расширении Вселенной получила признание только к концу первой трети XX века. Попутно с этим ученые пришли еще к целому ряду выводов: например, что звезды, удаляющиеся от наблюдателя, кажутся менее яркими благодаря эффекту Доплера (см. главу «Нечестно по отношению к Бёйс-Баллоту?»). Как и в случае со сменой частоты звука, издаваемого движущимся источником, спектр света звезды изменяется в зависимости от скорости движения, а свет от удаляющейся звезды смещается в сторону красной части спектра. Глаза млекопитающих в ходе эволюции стали максимально чувствительны к диапазону цветов, образующих в совокупности белый свет, а при смещении звездного света в сторону красного некоторые из цветов спектра выпадают, поэтому свет кажется менее ярким. Так что одна из причин того, что ночное небо не такое светлое, как могло бы быть, возможно, связана с эффектом Доплера: быстро движущиеся звезды, которые вроде бы должны быть столь же яркими, что и расположенные ближе и движущиеся медленнее, на деле смотрятся значительно тусклее.

Пожалуй, одного этого объяснения хватило бы, если бы новые данные о Большом взрыве и расширении Вселенной не добавили к общей картине еще один фактор. Большой взрыв явно был очень ярким благодаря огромной энергии, которая, как мы знаем, была сосредоточена в одной точке. Так разве в ночном небе по сей день не должны быть видны следы того свечения? Как выяснилось, обнаружить световое «эхо» Большого взрыва (см. главу «Вселенная — это вам не сарай») действительно возможно, но, как и в случае со звездным светом, эффект Доплера, вызванный стремительным расширением Вселенной, изменил оттенок отсветов той давней вспышки, в результате чего световые волны оказались далеко за красной границей спектра: они теперь не видны глазом и фиксируются только как микроволновое излучение.

Обманчиво простой вопрос, сформулированный в 1823 году Генрихом Вильгельмом Ольберсом, за два прошедших столетия привел ученых, жаждавших найти ответ, к целой череде новых открытий, да таких, о которых Ольберс не мог и мечтать.

Сколько длится световой год?

По мнению многих обывателей, такой вопрос звучит вполне нормально и осмысленно. Словосочетание «световой год» похоже на единицу измерения времени. Краткая прогулка по просторам Интернета приносит следующие перлы:

«Кажется, с тех пор, как Скотт Фицджеральд воспевал гибких и податливых девушек-подростков во взрослых нарядах, прошла уйма световых лет» (журнал «Пипл»).

«…в Америке это на протяжении долгих световых лет воспринималось как нечто само собой разумеющееся» («Крисчен сайенс монитор»).

«Ему чудилось, что после поездки в Севилью прошло несколько световых лет. Вспомнив Испанию, О’Нил понял, что настало время серьезных перемен…» («Дейли мейл»).

«101 световой год тому назад» (название альбома одной рок-группы).

«Звездный свет, который мы видим, можно сказать, уже устарел, ведь достигающий Земли свет покинул испускающее его небесное тело много световых лет назад» (из письма, опубликованного в газете «Таймс»).

И — ох, неловко же в этом признаваться! — я сам когда-то пропустил в телеэфир детскую передачу, в которой ведущий сказал группе детей: «Увидимся через пару световых лет!»

В действительности же в световых годах измеряется не время, а расстояние, поэтому единственно правильный ответ на вопрос, прозвучавший в заголовке этой главки, таков: «365 дней, 6 часов, 9 минут и 9,7676 секунд, иными словами столько же, сколько и любой другой год».

Это понятие, сбивающее многих с толку, приходится использовать по той причине, что расстояния до интересующих нас объектов во Вселенной очень велики: попробовав выразить их в любых земных единицах измерения, мы получим слишком громоздкие числа. Самая крупная единица измерения расстояния, используемая на Земле, а точнее, на суше, — это миля, и, поскольку до ближайшей к нам звезды (если не считать нашего Солнца) около 24 689 700 000 000 миль (39 734 220 000 000 километров), гораздо удобнее обозначить столь большое расстояние как 4,3 световых года: 4,3 года потребуется свету, чтобы проделать путь от этой звезды до Земли. Разумеется, можно было бы сказать: «25 триллионов миль», — это выглядит не так уж и устрашающе, но как быть, если речь зайдет о более отдаленных объектах, таких, как «далекая-далекая галактика» (как тут не вспомнить «Звездные войны»?!) под названием IOK-1? Расстояние до нее в милях — 75 715 квинтиллионов, это гораздо сложнее запомнить и выговорить, чем «12,88 миллиарда световых лет».

Все познается в сравнении. Если бы мы, говоря о земных расстояниях, оперировали бы только самыми мелкими единицами длины — если бы мы, скажем, были вирусами гриппа, чьи размеры измеряются микрометрами (1/1000000 метра), — тогда нам было бы сложновато обсуждать расстояние от Лондона до Нью-Йорка. (Впрочем, тут могли бы возникнуть и другие препятствия — например, отсутствие голосовых связок.) Если бы самой крупной нашей единицей длины был микрометр, что было бы в сто раз больше нашего роста, то расстояние до Нью-Йорка в 5 585 000 000 000 микрометров, мы могли бы выразить гораздо короче —1/5 световой секунды.

вернуться

16

Эдгар По. Эврика (опыт о вещественной и духовно! Вселенной) (1848) (Прим. ред.).