зических объектов («генетически тождественных» объектов в смысле Левина) с течением времени

изменяются, логические предикаты мы решаем использовать таким образом, что логические свойства

высказываний оказываются вневременными: если некоторое высказывание является тавтологией, оно

будет тавтологией всегда. Точно такую же вневременность мы — в соответствии с обычным упо-

треблением — придаем также понятиям «истинно» и «ложно». Говорить о некотором высказывании, что оно было вполне истинно вчера, но сегодня стало ложным, не соответствует общепринятому упо-

треблению. Если вчера мы считали истинным высказывание, которое сегодня оцениваем как ложное, то в этой оценке содержится неявное признание того, что вчера мы ошибались, что данное высказы-

вание было ложным уже вчера — ложным безотносительно ко времени, но мы ошибочно «принима-

ли его за истинное».

В этом пункте мы ясно можем видеть различие между истиной и подкреплением. Оценка некото-

рого высказывания как подкрепленного или неподкрепленного также является логической и, следо-

вательно, вневременной оценкой: она говорит о том, что между теоретической системой и некоторой

системой принятых базисных высказываний имеется определенное логическое отношение. Однако

мы никогда не можем просто сказать о некотором высказывании, что оно как таковое или само по се-

бе «подкреплено» (аналогично тому, как мы можем утверждать, что оно «истинно»). Можно лишь

сказать, что оно подкреплено относительно некоторой системы базисных высказываний, принимае-

мой в определенный момент времени. «Подкрепление, полученное теорией вчера», логически не

тождественно «подкреплению, полученному теорией сегодня». Поэтому каждой оценке подкрепле-

ния мы должны приписать, так сказать, определенный индекс, указывающий на ту систему базисных

высказываний, к которой относится данное подкрепление (например, отмечая дату их принятия)*2.

Таким образом, подкрепление не является «истинностной оценкой», то есть оно не может быть

поставлено в один ряд с понятиями «истинно» и «ложно» (у которых нет временных индексов). Одно

и то же высказывание может иметь любое число различных оценок подкрепления, кото-

1 (Добавлено в 1934 г. в верстке). Карнап, по-видимому, сказал бы «синтаксическими понятиями» (см.: Carnap R. Logische Syntax der Sprache. Wien, Springer, 1934; английский перевод: Carnap R. The Logical Syntax of Language. London, Paul Trench, 1937).

*2См. примечание *1 к разделу 81.

254

рые все могут быть «корректны» или «истинны» в одно и то же время, ибо эти оценки логически

выводимы из теории и различных множеств базисных высказываний, принимаемых в разные момен-

ты времени.

Высказанные соображения могут помочь нам также оценить различие между моим пониманием

истины и точкой зрения прагматистов, которые предлагают определять «истину» в терминах успеха

теории и, следовательно, в терминах ее полезности, ее подтверждения или подкрепления. Если они

при этом намереваются утверждать лишь то, что логическая оценка успеха теории может быть не бо-

лее чем оценкой ее подкрепления, то с этим я согласен. Однако, мне кажется, было бы далеко не «по-

лезно» отождествлять понятие подкрепления с понятием истины*3. Это противоречит также и обще-

принятому словоупотреблению. О теории вполне можно сказать, что она до сих пор вообще едва

подкреплена или что она все еще остается неподкрепленной, однако обычно мы не говорим, что тео-

рия до сих пор вообще едва истинна или что она все еще ложна.

85. Путь науки

В эволюции физики можно обнаружить нечто вроде общего направления — от теорий более низ-

48

кого уровня универсальности к теориям более высокого уровня универсальности. Это направление

обычно называют «индуктивным», и тот факт, что физика продвигается в этом «индуктивном»

направлении, казалось бы, можно использовать как аргумент в пользу индуктивного метода.

Однако продвижение в индуктивном направлении не обязательно складывается из последователь-

ности индуктивных выводов. Действительно, мы показали, что его можно объяснить совершенно

иным образом — в терминах степени проверяемости и подкрепляемости. Теория, которая была хо-

рошо подкреплена, может быть превзойдена только теорией более высокого уровня универсальности, то есть теорией, которая лучше проверяема и которая вдобавок содержит старую, хорошо подкреп-

ленную теорию или, по крайней мере, хорошее приближение к ней. Поэтому, может быть, лучше

считать это развитие к теориям все более высокого уровня универсальности «квазииндуктивным».

Квазииндуктивный процесс можно описать следующим образом. Выдвигаются и дедуктивно про-

веряются теории некоторого уровня универсальности; затем предлагаются теории более высокого

уровня универсальности, которые, в свою очередь, подвергаются проверке с помощью ранее выдви-

нутых теорий меньшего уровня универсальности, и т.д. При этом методы проверки постоянно опи-

раются на дедуктивные выводы от более высокого к более низкому уровню универсальности*1. Вме-

сте

*3Если бы мы определили «истинное» как «полезное» (что предлагают некоторые прагматисты) или как «успешное»,

«подтвержденное» или «подкрепленное», то мы ввели бы лишь новое «абсолютное» или «вневременное» понятие, играю-

щее роль «истины».

*г «Дедуктивные выводы от более высокого к более низкому уровню универсальности» являются, конечно, объяснения-

ми (в смысле, в котором употреблялось это понятие в разделе 12); поэтому гипотезы более высокого уровня будут объясни-

тельными по отношению к гипотезам более низкого уровня.

255

с тем в ходе своего временного развития благодаря переходу от более низких уровней к более вы-

соким достигаются соответствующие уровни универсальности.

В связи со сказанным могут возникнуть такие вопросы: почему бы нам сразу не построить теорию

самого высокого уровня универсальности? Зачем для этого ждать квазииндуктивной эволюции? Не

потому ли, что в ней, в конце концов, содержится некоторый индуктивный элемент? Я так не думаю.

В ходе развития науки постоянно выдвигаются все новые и новые предположения или теории всех

возможных уровней универсальности. Те теории, которые находятся, так сказать, на слишком высо-

ком уровне универсальности (то есть слишком далеко от уровня, достигнутого проверяемой наукой

данного периода), возможно, дают начало «метафизическим системам». В этом случае, даже если из

такой системы могут быть выведены (или выведены только частично, как это, например, имеет место

в системе Спинозы) высказывания, принадлежащие к господствующей в это время научной системе, среди них не будет новых проверяемых высказываний. Это означает, что нельзя поставить решающе-

го эксперимента для проверки рассматриваемой системы*2. Если же решающий эксперимент можно

поставить, то система будет содержать в качестве первого приближения некоторую хорошо подкреп-

ленную теорию, а также нечто новое — то, что можно проверить. Такая система не будет, конечно,

«метафизической». В этом случае рассматриваемая система может считаться новым успехом в квази-

индуктивной эволюции науки. Сказанное объясняет, почему связь с наукой данного периода имеют, как правило, лишь те теории, которые выдвигаются для преодоления существующей проблемной си-

туации, то есть существующих трудностей, противоречий и фальсификаций. Предлагая решение этих

трудностей, теория может указать путь к решающему эксперименту.

Для того чтобы построить наглядную модель этой квазииндуктивной эволюции науки, представим