Изменить стиль страницы

Для ослабления аберраций объективы рефракторов монтируют из двух (а иногда и трех) линз. Первая из них двояковыпуклая, вторая —плосковогнутая. Сложенные вместе, они действуют, как одна собирательная плосковыпуклая линза. Аналогичное устройство имеют и окуляры телескопов.

Оказывается, можно, подбирая кривизну линз и сорт их стекла, добиться того, чтобы объектив рефрактора практически не давал сферической аберрации. Полностью же уничтожить хроматическую аберрацию таким способом невозможно — обязательно остается некоторая, правда, однотонная (обычно голубоватая) окрашенность изображений.

Рефлекторы в этом отношении лучше рефракторов. Их объективы—зеркала — не обладают хроматической аберрацией, а если главному зеркалу к тому же придана форма параболоида, сферическая аберрация также сильно ослабляется. Правда, в этом случае главная трудность заключается в «параболизации» зеркала, в придании ему строго параболоидной формы. Необходимая точность здесь исключительно велика. Так, например, при изготовлении зеркала американского рефлектора обсерватории Маунт Паломар, имеющего 5 м в диаметре, допускаемые отступления от нужной формы не превышали долей микрометра!

Отсюда ясно, с какими огромными трудностями связана постройка крупных рефлекторов. Не легче создавать и крупные телескопы-рефракторы. Поэтому уже давно назрела необходимость в новых системах телескопов, которые при сравнительно небольших размерах обладали бы высокими оптическими качествами. Такие телескопы, названные менисковыми, были изобретены еще в 1941 г. членом-корреспондентом АН СССР Д.Д.Максутовым. В настоящее время менисковые телескопы широко используются как у нас, так и за рубежом.

Лучи света, идущие от светила, прежде чем попасть на главное вогнутое зеркало телескопа, проходят через тонкую выпукло-вогнутую рассеивающую линзу — мениск. Отразившись от главного зеркала, лучи снова возвращаются к мениску, центральная часть внутренней поверхности которого посеребрена и, таким образом, выполняет роль выпуклого зеркала. Отразившись от него, лучи попадают в окуляр, вставленный в отверстие главного зеркала. Преимущества менискового телескопа весьма существенны.

Во-первых (и в этом состоит главная идея менискового телескопа), форму поверхностей мениска можно выбрать так, что при сферической поверхности главного зеркала сферическая аберрация мениска полностью скомпенсирует (то есть как бы уничтожит) сферическую аберрацию зеркала. Хроматическая же аберрация из-за тонкости мениска и его малой искривленности практически отсутствует. Таким образом, менисковый телескоп дает четкие, неокрашенные высококачественные изображения.

Во-вторых, при изготовлении оптической части менисковых телескопов приходится затрачивать гораздо меньше усилий, чем при создании обычных рефлекторов. Причина в том, что не только у главного зеркала, но и у мениска поверхности имеют сферическую форму, а добиться такой формы технически несравненно легче, чем параболической.

В-третьих, луч света, попав в менисковый телескоп, дважды меняет свое направление. Эта особенность движения луча сильно сокращает длину инструмента и делает менисковый телескоп компактным, удобным в обращении.

Наконец, в-четвертых, мениск герметически закупоривает трубу телескопа. Это предохраняет главное зеркало от попадания влаги, пыли, что, конечно, удлиняет сроки его пригодности для наблюдений.

Школьный менисковый телескоп очень компактен — длина его тубуса (трубы) 25 см, а высота телескопа вместе со штативом 40 см. Проницающая его способность достаточно велика — в школьный менисковый телескоп доступны звезды до 11-й зв. величины. Более высока, чем у малого школьного рефрактора, его разрешающая способность — около двух секунд дуги.

На поворачивающейся окулярной обойме вмонтированы два окуляра, увеличивающие в 25 и 70 раз. Оба они снабжены зенитными призмами, облегчающими наблюдения светил, близких к зениту. Удобен визир, играющий роль своеобразного прицела при наводке телескопа на объект.

Установка школьного менискового телескопа — азимутальная, что является одним из его недостатков. Правда, азимутальная головка инструмента снабжена не только крепящими, но и микрометрическими «ключами» (винтами), позволяющими наблюдателю медленно поворачивать телескоп вслед за уходящим из поля зрения светилом, но это мало облегчает положение. Другое неудобство — короткий штатив, требующий дополнительной достаточно высокой опоры в виде стола, тумбы или специального столба.

Поле зрения инструмента большое. При увеличении в 25 раз его диаметр равен 48 минутам дуги, при увеличении в 70 раз — 10 минутам дуги, что почти вдвое меньше видимого лунного диска.

При всех недостатках установки школьного менискового телескопа его оптические качества достаточно высоки, и этот инструмент смело можно рекомендовать для изучения звездного неба.

Бесспорно лучший из всех трех школьных телескопов — большой школьный рефрактор с диаметром объектива 80 мм. Прежде всего, его установка не азимутальная, а параллактическая. В такой установке одна из двух взаимно перпендикулярных осей, вокруг которых может поворачиваться телескоп, направлена на полюс мира (или, приближенно, на Полярную звезду).

Благодаря этому при вращении вокруг другой оси телескоп следует за светилом, и для того, чтобы удерживать объект в поле зрения инструмента, достаточно пользоваться одним так называемым «часовым» ключом. Параллактическая головка инструмента (она сделана съемной) соединена с высоким раздвижным переносным штативом, что также создает существенные удобства для наблюдателя.

Мы опускаем (как и в предыдущих случаях) подробное описание технического устройства инструмента, так как все это хорошо изложено в подробных, обстоятельных инструкциях, прилагаемых к каждому из телескопов. Упомянем лишь, что большой школьный рефрактор имеет все черты «настоящего» телескопа: противовес на оси склонений, два зажимных и два микрометрических ключа, противоросник, устройство для установки по широте места наблюдения и многое другое. Диаметр его объектива, как уже отмечалось, 80 мм. Три окуляра позволяют применять увеличения в 80, 40 и 28,5 раза. В хорошие ночи удается различить звезды до 11,5m.

Теоретическая разрешающая способность большого школьного рефрактора — 1,75". На практике, по уже указанным причинам, она несколько ниже — 2,06".

Все три школьных телескопа — не только отличные средства для общего знакомства с достопримечательностями созвездий и Луны, но и инструменты, вполне пригодные для некоторых простейших научных наблюдений. Кто захочет от общего созерцания небесных тел перейти к посильному научному их изучению (что весьма желательно), может воспользоваться для этой цели обстоятельными руководствами, созданными П.Г.Куликовским и В.П.Цесевичем, а также Постоянной частью Астрономического календаря (М.: Наука, 1981).

В 1980 г. Новосибирский приборостроительный завод им. В.И.Ленина выпустил первую партию (4000 штук) нового небольшого телескопа «Алькор», предназначенного для любителей астрономии. Это рефлектор системы Ньютона с поперечником сферического зеркала 65 мм и фокусным расстоянием 502 мм. Окуляр системы Рамсдена дает увеличение в 33 раза. При этом поле зрения нового телескопа составляет 1°15". Дополнительное устройство (отрицательная линза Барлоу в отдельной трубке) увеличивает фокусное расстояние главного зеркала в 2,7 раза, что позволяет с тем же окуляром Рамсдена повысить увеличение до 88 раз и даже (изменив расстояние между линзой Барлоу и окуляром) до 133 раз. Это дает возможность изучать подробности при наблюдениях Луны, Солнца и некоторых планет. В телескоп «Алькор» доступны звезды до 11m, и oн успешно «разделяет» двойные звезды с расстоянием между компонентами, большим 2".

Установка нового телескопа азимутальная, снабженная механизмами для тонких движений по азимуту и высоте. Прицельные диоптры облегчают наведение на небесные объекты. Телескоп снабжен темным светофильтром для наблюдений Солнца, кистью для чистки оптических поверхностей. Он настолько портативен, что его легко можно переносить в чемодане. Стоимость «Алькора» 135 р.