Изменить стиль страницы

Он усмехнулся: «Ты же прошёл университетский курс физики. Почему не применяешь знания, полученные на занятиях?»

Я вначале даже не понял, какие знания здесь нужны. А отец объяснил: «В данном случае можно обойтись даже школьным курсом. Видишь какой мороз? Ночью, наверное, будет ещё сильнее. У яблонь корни близки к поверхности. Если они замёрзнут, весь сад погибнет. А вода, замерзая, выделяет очень много тепла. Пока она вся не замёрзнет, температура около корней ниже нуля не опустится. То есть вода согревает корни».

Я тогда уже окончил физический и биологический факультеты Ростовского университета. Успешно сдал тяжелейшие курсы — вроде термодинамики и статистической физики. Позднейшая работа показала: уровень полученного мною образования был вполне серьёзен. Но в тот момент знания ещё не устоялись в голове, не сложились в цельную систему. Потому и не стыковались с простейшим жизненным опытом.

Словом, знания — не просто накопленная информация. Это ещё и умение применять её, то есть как раз развитая способность находить верный ответ, правильное решение. Таков мой взгляд на вещи.

С головы — на ноги

Есть в Теории Решения Изобретательских Задач (ТРИЗ) такой приём: сделай наоборот! Выверни задачу наизнанку!

Приём по иерархии один из первых. Считается одним из сильнейших и в то же время весьма сложным в применении. Далеко не очевидно, что именно и как именно надо переворачивать. Это уже зависит от степени креативности изобретателя.

Лично я первое изобретение сделал ещё в школе. Его суть опубликовал тогда «Юный техник». Я изобрёл… пароход.

«Чепуха! — воскликнут некоторые. — Пароходу двести лет с гаком!» Но не спешите с выводами! То, что мы привыкли называть пароходами, движется всё-таки по воде. Двигатели у кораблей могут работать на разных принципах, но опора у всех у них одна — вода.

Я же предложил создать под кораблём паровую подушку — проще говоря, накалить днище так, чтобы вода под ним вскипала. Трение о пар неизмеримо меньше, чем о воду — вспомните, как бегает капля воды по горячему утюгу. А если наоборот — утюгом по воде? Своими опытами я даже загубил тогда мамин утюг. Получается нечто вроде известных воздушных подушек — только оборудование куда проще. Заодно и устойчивость обеспечена лучше: если одна сторона днища сильнее погрузится в воду, то пара под ней будет больше — и он её приподнимет.

А вот вам ещё один пример, на этот раз уже из арсенала моих братьев, профессиональных изобретателей.

Технология погружения в виртуальную реальность давно отработана. Пользователь надевает на себя виртуальный шлем, мониторы которого отображают трёхмерное пространство, сконструированное программистом и оформленное художником. Оно перестраивается в зависимости от направления взгляда, управляется датчиками положения головы и/или манипулятором. Самый простейший — компьютерная мышь: она даёт возможность взаимодействовать с объектами компьютерного мира и ходить по нему, но как бы снаружи.

Эффект присутствия в виртуальной реальности не полон главным образом из-за того, что в смоделированном мире невозможно естественным образом двигаться внутри него. Человек прикован к стулу, руки — к клавиатуре или к той же мыши.

Ещё в середине 1990-х мои братья предложили и изготовили устройство для свободного перемещения по виртуальному миру на собственных ногах в любом направлении и на любые расстояния. Эго устройство названо ВиртуСферой. Оно представляет собой огромный пустотелый шар от всё той же компьютерной мыши. То есть сферу — но достаточно большую, чтобы внутри неё свободно размещался и двигался человек.

Устанавливается сфера на колеса опоры и благодаря этому свободно вращается в любом направлении. Перед тем как войти в сферу через люк, пользователь надевает виртуальный шлем, а на спине располагается ноутбук. Человек делает шаг, сфера проворачивается, датчики под сферой передают эту информацию в компьютер, который пересчитывает и транслирует в виртуальный шлем приблизившуюся на один шаг картинку. И так далее.

А между прочим, изобретательский приём всё тот же. Если нельзя отойти от компьютера — значит, надо отоити, если нельзя ходить по виртуальному пространству своими ногами — значит, можно.

У всякой стороны есть её оборотная сторона, скрытая. Изнанка. Чтобы рассмотреть предмет всесторонне, надо перво-наперво оглядеть эту и ту, противоположную, сторону. Гегель сказал: видимость сущности — в противоположном.

Противоречие рождается там, где сходятся две противоположности. Но именно в разрешении противоречий и заключается изобретательство.

Порою, если найти возможность существования «мира наизнанку», можно не только написать любопытную книгу вроде «Алисы в Зазеркалье» Льюиса Кэрролла, но реально даже совершить открытие века.

«Как так?» — спросите вы. Да вспомним хотя бы математику.

«К данной прямой через данную вне её точку можно провести не более одной параллельной прямой» — это одна из формулировок пятого постулата Евклида. Но именно отказ от него привёл к открытию тремя гигантами — немцем Гауссом, венгром Больяи и русским Лобачевским — неевклидовой геометрии. А ведь вплоть до Гаусса — то есть до самого конца XVIII века — никто не усомнился ни в истинности пятого постулата, ни в том, что евклидова геометрия единственно возможна, ни в том, что она описывает реальный физический мир.

Впрочем, в основе всех человеческих достижений лежит творческая одарённость — умение мыслить парадоксально и действовать нестандартно, эффективно и продуктивно, находя всё новые пути к знанию и открытию.

Чтобы изобретать, надо порой идти от обратного, надо уметь смотреть на мир другими глазами, выходить за границы привычного, обыденного, очевидного, двигаться в пространстве мысли подчас наперекор здравому смыслу и формальной логике.

Должен с прискорбием заявить: современная российская школа делает акцент на запоминании готового знания. Эго способствует тому, что готовность к работе с противоречиями в ребёнке убивается с детства под корень. У нас растут исполнители инструкций и шаблонов, способные действовать только так, под копирку, а не иначе. Между тем жизнь полна противоречий и проблем, быстро меняющихся обстоятельств.

Пока не поздно, надо вернуть образование в нормальное положение, то есть с головы поставить снова на ноги. Это тот самый перпендикулярный выход из очевиднейшего тупика или замкнутого круга, в котором мы оказались в результате скороспелых школьных реформ.

Капли Левенгука

Ещё в детстве мы узнаём: Антони ван Левенгук в 1673 году открыл одноклеточные микроорганизмы благодаря тому, что изобрёл и изготовил микроскопы непревзойдённого по тому времени качества. Более того, он строил эти микроскопы тысячами. До наших дней дошли многие сотни.

И мало кто задумывается: как скромный часовщик смог у себя дома организовать массовое производство сложнейших оптических приборов? Ведь по сравнению с оптической точностью даже нынешние достижения часовой технологии чудовищно грубы. А уж в его эпоху вовсе не существовало оборудования сколько-нибудь приемлемого качества. Даже сотней лет позже изобретатель конденсатора пара и создатель паровых машин двойного действия Джеймс Уатт восхищался небывалой точностью изготовления своих установок: между цилиндром и поршнем с трудом пролезала шестипенсовая монета!

Правда, оптики ещё в раннем Средневековье нашли способы довольно точного производства сферических поверхностей. Сфера получается сама собою, если два куска стекла тереть друг о друга, постоянно меняя направления движения: только сферы (и частный их случай — плоскости) могут прилегать друг к другу при любых смещениях.

Увы, такая работа требует немалого времени: стоит нажать чуть посильнее, чтобы ускорить истирание стекла, и упругая деформация исказит поверхность. А главное — радиус кривизны стёкол должен быть на несколько порядков больше возможных величин этой самой деформации. Между тем для значительного увеличения требуются как раз малые радиусы. Оптические схемы современных микроскопов сложны не только потому, что взаимодействие стёкол с разными оптическими свойствами может погасить многие аберрации, т. е. искажения, но и потому, что множеством слабо искривлённых поверхностей можно обеспечить нужную силу фокусировки, добиться значительного увеличения.