Кстати, с помощью такого «иодидного» метода сейчас получают некоторые металлы очень высокой степени чистоты. Для этого загрязненный металл нагревают в парах иода, при этом образуется летучее соединение иода только с атомами данного металла. Полученное газообразное соединение переносят в другую часть реактора, где его вводят в контакте раскаленной проволокой из того же металла, но только предварительно хорошо очищенного. Когда летучее соединение металла с иодом начинает на этой проволоке разлагаться, выделяющиеся пары иода отводят в то место реактора, где находится загрязненный металл, а на проволоке начинают расти кристаллы выделившегося металла очень высокой чистоты.
Возбуждать электроны в атомах, чтобы они начали испускать свет, можно и по-другому. Например, в лампах дневного света свет испускают ртутные пары, а энергию атомы ртути получают за счет электрического разряда. Если трубку для такой лампы сделать из специального стекла, пропускающего ультрафиолетовый свет, то лампа будет гореть бледно-синим светом, испуская также невидимые ультрафиолетовые лучи, которые убивают микробов. Такие лампы называют бактерицидными, их устанавливают в больницах и поликлиниках и периодически включают для стерилизации помещений.
Если трубку для лампы сделать из обычного стекла, но покрыть ее изнутри специальным белым порошком — люминофором (о люминофорах мы еще поговорим), то этот порошок, поглощая вредный для глаз ультрафиолет, сам начнет светиться белым светом. Иногда этот свет имеет приятный желтоватый оттенок, который придает ему сходство с солнечным светом, соответственно бывают люминесцентные лампы дневного, белого, тепло-белого и холодно-белого света. Эти лампы значительно экономичнее ламп накаливания: современная 11-ваттная люминесцентная лампа дает света столько же, сколько 75-ваттная лампа накаливания! Срок службы люминесцентных ламп также в несколько раз больше. Еще одно преимущество — давление паров ртути в люминесцентной лампе низкое, поэтому ее трубка чуть теплая, случайно до нее дотронувшись, невозможно обжечься, значит, уменьшается опасность возгорания или оплавления пластмассового светильника. Но есть у люминесцентных ламп и неприятная особенность: в них содержится немного ртути, и когда такие лампы просто выбрасывают на свалку, где они бьются, это приводит к загрязнению воздуха и почвы ядовитым металлом.
Если к парам ртути в лампе добавить под давлением инертный газ, а трубку сделать из тугоплавкого кварцевого стекла, можно значительно повысить температуру и получить лампу типа «горное солнце». Именно такими лампами нас облучают в поликлиниках, когда врач назначает «кварц». Сейчас кварцевые ультрафиолетовые лампы можно купить в магазине и использовать для загара в зимнее время (особенно в северных районах страны, где мало естественного солнечного ультрафиолета). Однако необходимо очень строго придерживаться инструкции, чтобы не получить ожога (особенно надо беречь глаза), а еще лучше — проконсультироваться с врачом: не всем искусственный ультрафиолет полезен.
Ртутные лампы высокого давления, наподобие тех, что применяют в кабинетах физиотерапии, исправно работают и для освещения улиц. Это двойные лампы: внутри у них кварцевая лампа, а снаружи — большой стеклянный баллон, также покрытый изнутри люминофором, который излучает свет, несколько напоминающий дневной. Такие лампы могут иметь мощность в десятки киловатт; их используют для освещения площадей, стадионов, железнодорожных узлов — везде, где требуется создать хорошее освещение на большой площади. Для этой цели используют также ксеноновые лампы сверхвысокого давления (рис. 6.1). В такой лампе электрический разряд создается между двумя массивными вольфрамовыми электродами, которые впаяны в кварцевый баллон. Лампа заполнена тяжелым газом ксеноном. Она излучает не только в видимой, но и в ультрафиолетовой и инфракрасной областях спектра и потому используется в качестве источника света в различных приборах.
Многие жители больших городов заметили, что в последние годы небо по ночам имеет красновато-оранжевый цвет, особенно в облачную погоду. Это происходит потому, что для освещения улиц и площадей стали использовать натриевые лампы, в которых светятся пары не ртути, а натрия. Свет, излучаемый раскаленными парами натрия, знаком любой хозяйке, у которой хоть раз «убегал» и попадал на горящую конфорку посоленный суп. Желтый свет паров натрия довольно сильно отличается от солнечного света, поэтому к натрию добавляют другие металлы, что делает свет желто-оранжевым. Натриевые лампы экономичнее, так как при той же затрате электроэнергии дают значительно большую освещенность.
Химики синтезировали множество соединений, которые могут светиться, оставаясь холодными. Такие вещества называют люмино форами (от латинского lumen — «свет» и греческого «форос» — «несущий»). Чтобы люминофор светился, его атомы надо возбуждать, т. е. подводить энергию. Делать это можно разными способами. Самый распространенный способ возбуждения — светом, видимым или ультрафиолетовым. Общее название свечения, вызванного таким способом, — фотолюминесценция. У нее есть две разновидности. Так, если возбужденное светом вещество излучает свет очень короткое время — порядка 10-8—10-9 секунды после поглощения возбуждающего фотона, то такое излучение называется флуоресценцией. Свое название этот вид излучения получил от названия минерала флюорита, у которого данное явление было впервые обнаружено. Кристаллы флюорита довольно редки, однако многие из вас, возможно, видели синеватое свечение кристаллов нафталина на солнечном свету, зеленоватое свечение растворов флуоресцсина или эозина (эти красители иногда добавляют к шампуням и экстрактам для ванн), яркое свечение бакенов, цветных афиш, деталей одежды, специальных красок для фломастеров (маркеров) и т. д. Все они содержат так называемые дневные флуоресцирующие красители — сложные органические соединения, поглощающие ультрафиолетовые и синие солнечные лучи и излучающие зеленые, оранжевые или красные. Школьник младших классов, ранец которого окрашен яркой флуоресцентной краской, может с меньшей опасностью переходить дорогу, так как шофер увидит его издалека. Еще не так давно в метрополитене некоторых городов использовались турникеты, принцип действия которых основывался на эффекте флуоресценции. В турникеты тогда надо было опускать круглые пластмассовые жетоны, в которые был подмешан флуоресцирующий краситель. Внутри турникета была спрятана ртутная лампочка — источник ультрафиолета, под действием которого пролетающий мимо жетон на мгновение вспыхивал яркой флуоресценцией — в Москве сине-голубой, в других городах она могла быть иного цвета. Специальный фотоэлемент реагировал на эту вспышку и открывал проход. Глядя в щель автомата, можно было заметить эту яркую вспышку.
Сильной флуоресценцией обладает хинин — сложное органическое соединение исключительно горького вкуса, содержащееся в коре хинного дерева. Хинин используют как лекарство от малярии, а также добавляют к различным тонизирующим напиткам. Малые добавки хинина придают напиткам чуть горьковатый привкус, а также… способность ярко светиться под действием ультрафиолетовых лучей!
Флуоресцирующие красители входят в состав многих моющих средств. Здесь они выполняют роль оптических отбеливателей, о которых говорилось в разделе, посвященном технике безопасности. Люминесцирующие красители вводят для защиты or подделок и в денежные купюры. Многие видели, как кассир проверяет подлинность 500- или 1000-рублевой купюры, подставляя ее под специальный ультрафиолетовый светильник. Светятся разным цветом на темном фоне отдельные элементы купюры — надписи, узоры, а также вкрапленные в бумагу волокна.