Изменить стиль страницы
Рис. 2.17. Максимально-минимальный термометр

В нижней части U-образного капилляра находится столбик ртути (поскольку ртути в приборе мало, изменением ее объема при изменении температуры можно пренебречь). А рабочим телом в термометре, которое и реагирует на изменения температуры, служит бесцветная органическая жидкость, основной объем которой находится в широкой пробирке. С обеих сторон в капилляр помещены миниатюрные ползунки из синего стекла.

При повышении температуры расширяющаяся жидкость давит на ртутный столбик и перемещает его так, что правый мениск поднимается, толкая при этом правый ползунок вверх, а левый — опускается (обратите внимание на перевернутую шкалу слева). При понижении температуры ртуть перемещается в обратном направлении, толкая вверх левый ползунок, тогда как правый остается на месте. Таким образом, оба ползунка могут двигаться только вверх и показывать самую высокую и самую низкую температуру, которая отмечалась прибором (в данном случае +28 и +14 °C — такие температуры были в течение года в квартире, в которой висел этот термометр). Встряхивая термометр, можно установить оба ползунка в позицию, соответствующую показанию термометра в данный момент (на рисунке — около +24 °C), при этом ползунки упрутся в ртутные столбики.

Удивительная химия i_029.jpg
Рис. 2.18. Термометры Аншютца и Бекмана

Заканчивая небольшую экскурсию в мир стеклянных термометров, трудно удержаться, чтобы не продемонстрировать среди них великана и карлика (рис. 2.18). У маленького термометра Аншютца — он назван по имени немецкого химика Рихарда Аншютца (1852–1937) — вверху припаян стеклянный шарик, за который его легко подвесить на ниточке в нужной части аппаратуры. Огромным кажется рядом с ним термометр, изобретенный немецким химиком Эрнстом Отто Бекманом (1853–1923). Это так называемый метастатический термометр переменного наполнения. За этими мудреными словами скрывается вот что. Термометр предназначен для определения не самой температуры, а лишь ее изменения в небольшом интервале — зато с очень высокой точностью. Это требуется, когда анализируют вещество по повышению температуры кипения или по понижению температуры плавления его раствора. В термометре Бекмана две шкалы: большая основная, длиной более полуметра, соответствует изменению температуры всего на 5 °C, что позволяет разместить на ней 600 делений через 0,01 °C. (С помощью увеличительного стекла можно повысить точность отсчета до 0,001 °C!) Нужный диапазон измерений — в любом интервале от —20 до +150 °C — устанавливают, отливая часть ртути из большого резервуара внизу в петлеобразный запасной резервуар вверху, либо наоборот. Делается такая операция путем переворачивания термометра и легкого его встряхивания.

В последние годы жидкостные термометры все увереннее вытесняются электронными приборами (рис. 2.19). Они и безопаснее (не содержат ртути), и точнее, и позволяют измерять температуру там, где обычный термометр бесполезен (например, в живой клетке). Вместо шарика с ртутью в таком приборе небольшой датчик — термочувствительный элемент, занимающий очень малый объем. Если его нагреть (или охладить), на выходе появится небольшое электрическое напряжение, которое можно измерить и таким образом определить температуру.

Удивительная химия i_030.jpg
Рис. 2.19. Электронный термометр, показывающий, что температура жидкости в стакане равна +77,3 °C

Сравнительно недавно появились «одноразовые термометры», предназначенные для измерения температуры… жареной котлеты! Известно, что многие пищевые отравления происходят из-за бактериальной зараженности продуктов, особенно скоропортящихся. И рыба, и мясо — прекрасная питательная среда для многих микроорганизмов, которые могут при благоприятных условиях размножаться с огромной скоростью. Для размножения патогенных микробов существует оптимальная температура. При низких температурах бактерии растут очень медленно, а при высоких они гибнут.

Единственный надежный способ обеззараживания долго хранившихся пищевых продуктов — тепловая обработка. Так, температурная обработка молока предусматривает либо пастеризацию в течение получаса при +62… +65 °C, либо кратковременную (10–20 секунд) обработку при +71… +74 °C, при которой уничтожаются почти все микроорганизмы, либо достаточно длительную стерилизацию при +115 °C, при которой гибнут все патогенные микроорганизмы и их споры. Когда-то нередки были вспышки инфекционных заболеваний, вызванных потреблением зараженного молока (туберкулез, бруцеллез, дизентерия и др.). С потреблением зараженного мяса связаны различные глистные заболевания — гельминтозы и инфекционные болезни.

Перед употреблением многие продукты обязательно подвергаются тепловой обработке. Выдерживание продуктов при +60… +65 °C в течение 5-15 минут полностью убивает возбудителей бруцеллеза и ящура. При этом не только гибнут микроорганизмы, но изменяется состав продуктов. Уже при +60… +70 °C начинаются химические превращения белков, что облегчает их усвоение. Не рекомендуется есть и сырые куриные яйца (а утиные — категорически запрещено). Яйца нередко заражены сальмонеллами, которые вызывают тяжелые пищевые отравления. Для безопасности сырые куриные яйца надо нагреть примерно до +70 °C (при этом они фактически остаются сырыми). Поэтому кулинарная обработка мяса, птицы, рыбы совершенно необходима.

Удивительная химия i_031.jpg
Рис. 2.20. «Бумажный термометр» в действии

Как же узнать, что гамбургер или куриные ножки прогрелись в духовке или микроволновой печи в достаточной степени? Для этого существуют различные термометры, в том числе электронные, но они довольно дорогие. Альтернативой могут служить дешевые одноразовые термометры (рис. 2.20). Такой термометр представляет собой небольшую картонную пластинку, на кончике которой находится маленький термочувствительный индикатор — белый прямоугольничек размером примерно 6x4 мм. Достаточно всего на пять секунд поместить кончик индикатора в подогреваемый продукт, чтобы определить, хорошо ли он прогрелся. Если индикатор остался белым, нагрев следует продолжить, пока пластинка не почернеет. Почернение пластинки указывает на то, что требуемая температура достигнута. Для каждого вида продукта существует свой индикатор, цвет которого меняется только при достижении определенной температуры: для рыбы — это индикатор на +60 °C; для гамбургера, мясного фарша, свинины или яиц в кастрюле с водой — на +71 °C, для цыплячьих грудок — на +77 °C и т. д.

Как же устроен такой необычный «термометр»? Его кончик, который и измеряет температуру, герметично покрыт безвредной полимерной пленкой. Под этой прозрачной оболочкой находится белый порошок, а под ним — черный картон. При достижении определенной температуры белый порошок быстро плавится и становится видна черная подложка (рис. 2.21). Все просто. Для каждой температуры подобрано безвредное вещество, которое плавится при данной температуре. Точность определения температуры таким «прибором» — примерно 0,5 °C.

Удивительная химия i_032.png
Рис. 2.21. Новая полоска (а), термочувствительный индикатор нагрет до начала плавления (вещество расплавилось не полностью) (б), новая полоска со снятым покрытием (в)