Изменить стиль страницы

Мы не можем пока разглядеть планеты у других звезд – крошечные светлые точки, тонущие в сиянии своих солнц. Но мы уже близки к тому, чтобы обнаруживать гравитационное воздействие невидимых планет на наблюдаемые звезды. Представьте такую звезду с большим «собственным движением», которая десятилетиями перемещается на фоне более далеких созвездий и обладает крупной планетой, масса которой сравнима, скажем, с массой Юпитера, а плоскость орбиты перпендикулярна лучу зрения. Когда темная планета находится (с нашей точки зрения) справа от звезды, звезда будет отклоняться немного влево, и вправо, когда планета оказывается слева. Следовательно, траектория звезды будет испытывать возмущения и из прямой линии превратится в волнообразную. Ближайший объект, к которому можно применить метод гравитационных возмущений, – это звезда Барнарда, самое близкое к нам одиночное светило. Сложное взаимодействие трех звезд в системе Альфы Центавра затрудняет поиск в ней маломассивных компонентов. Даже в случае звезды Барнарда исследование потребует кропотливого поиска микроскопических смещений на фотопластинках, экспонированных на одном телескопе в течение десятков лет. Две такие попытки обнаружения планет вокруг звезды Барнарда уже предпринимались, и обе по некоторым критериям оказались успешными, указывая на присутствие двух или более планет с массой Юпитера, орбиты которых (рассчитанные по третьему закону Кеплера) проходят несколько ближе к звезде, чем орбиты Юпитера и Сатурна – к Солнцу. К сожалению, две серии наблюдений дают противоречивые результаты. Планетную систему вокруг звезды Барнарда можно считать обнаруженной, но для того, чтобы добиться однозначности, потребуются дальнейшие исследования [156].

Разрабатываются и другие методы обнаружения планет вблизи звезд. Один из них сводится к тому, что слепящий свет звезды заслоняют искусственным диском, располагаемым перед космическим телескопом (в качестве такого диска можно использовать темный край Луны), и тогда отраженный планетой свет уже не теряется в ярком сиянии звезды. В течение нескольких следующих десятилетий мы наверняка узнаем, у каких из сотен ближайших звезд есть планетные системы.

В последние годы наблюдения в инфракрасном диапазоне вскрыли присутствие вокруг некоторых близких к нам звезд протопланетных газопылевых дисков. Между тем некоторые оригинальные теоретические исследования указывают, что планетные системы широко распространены в Галактике. В ряде компьютерных моделей изучалась эволюция плоского конденсирующегося диска из газа и пыли, подобного тем, в которых, как принято думать, образуются звезды и планеты. В случайные моменты времени в облако вбрасывались небольшие куски вещества, моделирующие первичные конденсации в диске. По мере движения на них оседали частицы пыли. Вырастая, они начинали гравитационно притягивать газ облака – преимущественно водород. В программу было заложено, что при столкновении такие куски вещества слипаются. Процесс продолжался, пока не исчерпывались запасы газа и пыли. Результаты зависели от начальных условий, особенно от того, как менялась плотность газа и пыли с удалением от центра облака. Но в определенном диапазоне правдоподобных начальных условий формировались планетные системы, похожие на нашу: около десяти планет, вблизи звезды – планеты земного типа, снаружи – типа Юпитера. В других обстоятельствах планет не было – образовывалось лишь небольшое количество астероидов; или планеты типа Юпитера оказывались вблизи звезды; или крупные планеты собирали слишком много газа и пыли и становились звездами, порождая двойные звездные системы. Пока еще рано говорить об этом с уверенностью, но похоже, что в Галактике можно найти самые разнообразные планетные системы, и встречаться они должны очень часто – ведь все звезды, как мы полагаем, образуются из таких облаков газа и пыли. В Галактике может быть сто миллиардов планетных систем, ждущих своих исследователей.

Ни один из этих миров не будет точно таким же, как Земля. Редкие из них покажут себя гостеприимными, большинство – враждебными. Многие поразят красотой. В некоторых мирах на дневном небе будут светить несколько солнц, а ночью – множество лун. Где-то обнаружатся величественные системы колец, протянувшиеся от горизонта до горизонта. Некоторые спутники будут столь близки к своей планете, что, нависая над ними, она закроет полнеба. А с некоторых планет будет открываться вид на обширные газовые туманности, оставшиеся на месте некогда существовавшей обычной звезды. И на всех этих небесах, полных далекими и экзотическими созвездиями, найдется маленькая желтая звездочка, возможно едва различимая невооруженным глазом, может быть видимая только в телескоп, – родное светило флота межзвездных кораблей, исследующих этот крошечный участок великого Млечного Пути.

Темы пространства и времени, как мы увидели, тесно переплетены. Планеты и звезды, подобно людям, рождаются, живут и умирают. Жизнь человека измеряется десятилетиями; жизнь Солнца в сто миллионов раз длиннее. В сравнении со звездами мы подобны мушкам-подёнкам, эфемерным созданиям, чья жизнь целиком укладывается в один день. С точки зрения подёнки человеческие существа вялые, скучные, почти совершенно неподвижные, не проявляющие признаков какой-либо деятельности. С точки зрения звезды человек – крошечная вспышка, одна из миллиардов скоротечных жизней, мерцающих на поверхности удивительно холодного, аномально твердого и экзотически далекого шара из кремния и железа.

Во всех затерянных в космосе мирах протекают процессы и случаются события, определяющие их будущее. А наша маленькая планета в данный момент своей истории находится в критически важной точке, столь же важной, как противостояние ионийских ученых и мистиков две с половиной тысячи лет назад. То, что мы сделаем сейчас с нашим миром, оставит свой след в веках и определит судьбу наших потомков и их жизнь среди звезд, если она состоится.

Глава IX ЖИЗНЬ ЗВЕЗД

Открыв глаза, [Ра, бог Солнца] пролил свет на Египет и отделил ночь ото дня. Из его рта вышли боги, а люди – из его глаз. Все вещи получили свою жизнь от него, ребенка, сияющего в лотосе, чьи лучи дают жизнь всякому существу.

Египетское заклинание времен Птолемеев

Бог способен создавать частицы вещества различных размеров и форм... и, возможно, различной плотности и силы и таким образом изменять законы Природы и порождать разного вида миры в различных частях Вселенной. По крайней мере, я не вижу в этом ничего противоречивого.

Исаак Ньютон. Оптика

Бывало, все небо над головой усеяно звездами, и мы лежим на спине, глядим на них и спорим: что они – сотворены или сами собой народились?

Марк Твен. Приключения Гекльберри Финна

Я испытываю... страшную потребность... какое бы подобрать слово?.. в религии. Тогда я выхожу ночью на улицу и рисую звезды.

Винсент Ван Гог

Чтобы приготовить яблочный пирог, нужны мука, яблоки, еще кое-какие мелочи и горячая печь. Все ингредиенты состоят из молекул – сахара, к примеру, или воды. Молекулы, в свою очередь, состоят из атомов: углерода, кислорода, водорода и небольшого количества других. Откуда появились эти атомы? За исключением водорода, все они образовались в звездах. Звезды – это своеобразные космические кухни, где из атомов водорода готовятся более тяжелые элементы. Звезды конденсируются из межзвездного газа и пыли, которые состоят в основном из водорода. А сам водород возник во время Большого Взрыва, положившего начало Космосу. Если вы хотите сделать яблочный пирог «с нуля», вам для начала придется изобрести Вселенную.

Предположим, вы взяли яблочный пирог и разрезали пополам; возьмите один из двух кусков и поделите пополам его;продолжайте далее в духе Демокрита. Сколько разрезов придется сделать, прежде чем мы получим отдельный атом? Ответ: примерно девяносто разрезов. Конечно, нет ножа, достаточно острого для такой работы, к тому же пирог будет крошиться, а уж атомы в любом случае слишком маленькие, чтобы их удалось разглядеть невооруженным глазом. И все же есть один способ.

вернуться

156

Последняя попытка применить астрометрический метод для обнаружения планет у Проксимы Центавра и звезды Барнарда дала отрицательный результат. По сообщению Фрица Бенедикта, который вместе с коллегами в течение ряда лет вел наблюдения с использованием космического телескопа Хаббла и в 1999 г. опубликовал их результаты, у Проксимы Центавра нет спутников массой более 0,8 массы Юпитера и периодом более 60 суток, а у звезды Барнарда нет планет с массой более массы Юпитера и периодом более 150 суток. Ранее выполненные наблюдения, свидетельствовавшие о наличии планет у звезды Барнарда, сейчас принято считать ошибочными. Тем не менее астрометрический метод, по-видимому, позволил все же обнаружить планеты вне Солнечной системы. В 1996 г. опубликована работа, согласно которой у звезды Лаланд 21185 найдено два планетообразных спутника: один с массой 1,6 массы Юпитера и периодом обращения 30 лет, а второй – с массой 0,9 массы Юпитера и периодом 6 лет. Однако пока эта планетная система не числится в списке надежно подтвержденных. – Пер.