Хороша шуба из густого меха, содержащего как можно больше волокон; гагачий пух позволяет изготовлять теплые спальные мешки весом меньше полукилограмма из-за исключительной тонины своих волокон. Полкилограмма этого пуха могут «задержать» столько же воздуха, сколько десяток килограммов ватина.
Для уменьшения конвекции делают двойные рамы. Воздух между стеклами не участвует в перемешивании воздушных слоев, происходящем в комнате.
Наоборот, всякое движение воздуха усиливает перемешивание и увеличивает передачу тепла. Именно поэтому, когда нам нужно, чтобы тепло уходило побыстрее, мы обмахиваемся веером или включаем вентилятор. Поэтому на ветру и холоднее. Но если температура воздуха выше температуры нашего тела, то перемешивание приведет к обратному результату, и ветер ощущается, как горячее дыхание.
Задача парового котла состоит в том, чтобы как можно быстрее получать нагретый до нужной температуры пар. Естественной конвекции в поле тяжести для этого совершенно недостаточно. Поэтому создание интенсивной циркуляции воды и пара, приводящей к перемешиванию теплых и холодных слоев, является одной из основных задач при конструировании паровых котлов.
XII. Состояния вещества
Железный пар и твердый воздух
Не правда ли – странное сочетание слов? Однако это вовсе не чепуха: и железный пар, и твердый воздух существуют в природе, но только не при обычных условиях.
О каких же условиях идет речь? Состояние вещества определяется двумя обстоятельствами: температурой и давлением.
Наша жизнь протекает в относительно мало меняющихся условиях. Давление воздуха колеблется в пределах нескольких процентов около одной атмосферы (1 кГ/см 2); температура воздуха, скажем, в районе Москвы лежит в интервале от −30° до +30°; в абсолютной шкале температур, в которой за нуль принята самая низкая возможная температура (−273°), этот интервал будет выглядеть менее внушительно: 240–300 K, что также составляет всего ±10 % от средней величины.
Вполне естественно, что мы привыкли к этим обычным условиям и поэтому, говоря простые истины вроде: «железо – твердое тело, воздух – газ» и т.д., мы забываем добавить: «при нормальных условиях».
Если нагревать железо, оно сначала расплавится, а потом испарится. Если воздух охлаждать, то он сначала превратится в жидкость, а затем затвердеет.
Даже если читатель и не встречался никогда с железным паром и твердым воздухом, он, вероятно, без труда поверит, что любое вещество изменением температуры можно получать и в твердом, и в жидком, и в газообразном состоянии, или, как еще говорят, в твердой, жидкой или газовой фазе.
Поверить в это легко потому, что одно вещество, без которого жизнь на Земле была бы невозможной, каждый наблюдал и в виде газа, и как жидкость, и в виде твердого тела. Речь идет, конечно, о воде.
При каких же условиях происходят превращения вещества из одного состояния в другое?
Кипение
Если опустить термометр в воду, которая налита в чайник, включить электроплитку и следить за ртутью термометра, то мы увидим следующее: почти сразу же уровень ртути поползет кверху. Вот уже 90°, 95°, наконец 100°. Вода закипает, и одновременно прекращается подъем ртути. Вода кипит уже много минут, но уровень ртути не изменяется. Пока вся вода не выкипит, температура не изменится (рис. 97).
На что же идет тепло, если температура воды не меняется? Ответ очевиден. Процесс превращения воды в пар требует энергии.
Сравним энергию грамма воды и грамма образовавшегося из нее пара. Молекулы пара расположены дальше одна от другой, чем молекулы воды. Понятно, что из-за этого потенциальная энергия воды будет отличаться от потенциальной энергии пара.
Потенциальная энергия притягивающихся частиц уменьшается с их сближением. Поэтому энергия пара больше энергии воды, и превращение воды в пар требует энергии. Этот избыток энергии и сообщается электроплиткой воде, кипящей в чайнике.
Энергия, нужная для превращения воды в пар, называется теплотой испарения. Для превращения 1 г воды в пар требуется 539 кал (это цифра для температуры 100 °C). Если 539 кал идет на 1 г, то на 1 грамм-молекулу воды будет затрачено 18·539 = 9700 кал. Такое количество тепла надо затратить на разрыв межмолекулярных связей.
Можно сравнить эту цифру с величиной работы, необходимой для разрыва внутримолекулярных связей. Для того, чтобы одну грамм-молекулу водяного пара расщепить на атомы, требуется около 220 000 кал, т.е. в 25 раз больше энергии. Это непосредственно доказывает слабость сил, связывающих молекулы друг с другом, по сравнению с силами, стягивающими атомы в молекулу.
Зависимость температуры кипения от давления
Температура кипения воды равна 100 °C; можно подумать, что это неотъемлемое свойство воды, что вода, где бы и в каких условиях она ни находилась, всегда будет кипеть при 100 °C.
Но это не так, и об этом прекрасно осведомлены жители высокогорных селений.
Вблизи вершины Эльбруса имеется домик для туристов и научная станция. Новички иногда удивляются, «как трудно сварить яйцо в кипятке» или «почему кипяток не обжигает». В этих случаях им указывают, что вода кипит на вершине Эльбруса уже при 82 °C.
В чем же тут дело? Какой физический фактор вмешивается в явление кипения? Какое значение имеет высота над уровнем моря?
Этим физическим фактором является давление, действующее на поверхность жидкости. Не нужно забираться на вершину горы, чтобы проверить справедливость сказанного.
Помещая подогреваемую воду под колокол и накачивая или выкачивая оттуда воздух, можно убедиться, что температура кипения растет при возрастании давления и падает при его уменьшении.
Вода кипит при 100 °C только при определенном давлении – 760 мм Hg.
Кривая температуры кипения в зависимости от давления показана на рис. 98. На вершине Эльбруса давление равно 0,5 атм, этому давлению и соответствует температура кипения 82 °C.
А вот водой, кипящей при 10–15 мм Нg, можно освежиться в жаркую погоду. При этом давлении температура кипения упадет до 10–15 °C.
Можно получить даже «кипяток», имеющий температуру замерзающей воды. Для этого придется снизить давление до 4,6 мм Hg.
Интересную картину можно наблюдать, если поместить открытый сосуд с водой под колокол и откачивать воздух. Откачка заставит воду закипеть, но кипение требует тепла. Взять его неоткуда, и воде придется отдать свою энергию. Температура кипящей воды начнет падать, но так как откачка продолжается, то падает и давление. Поэтому кипение не прекратится, вода будет продолжать охлаждаться и в конце концов замерзнет.
Такое кипение холодной воды происходит не только при откачке воздуха. Например, при вращении гребного корабельного винта давление в быстро движущемся около металлической поверхности слое воды сильно падает и вода в этом слое закипает, т.е. в ней появляются многочисленные наполненные паром пузырьки. Это явление называется кавитацией (от латинского слова cavitas – полость).
Снижая давление, мы понижаем температуру кипения. А увеличивая его? График, подобный нашему, отвечает на этот вопрос. Давление в 15 атм может задержать кипение воды, оно начнется только при 200 °C, а давление в 80 атм заставит воду закипеть лишь при 300 °C.
Итак, определенному внешнему давлению соответствует определенная температура кипения. Но это утверждение можно и «перевернуть», сказав так: каждой температуре кипения воды соответствует свое определенное давление. Это давление называется упругостью пара.