Изменить стиль страницы

С точки зрения квантовой физики, при помещении второго зеркала в точке Р в нашем эксперименте отложенного выбора оба разделенных пакета потенциально соединяются и интерферируют; тут нет никакой проблемы. Если бы в точке Р было зеркало, и мы убирали его в последнюю возможную пикосекунду, обнаруживая фотон, скажем, на пути А, то казалось бы, что фотон ретроактивно реагирует на наш отложенный выбор, двигаясь только по одному пути. Следовательно, в этом случае казалось бы, что следствие предшествует причине. Этот результат не нарушает закон причинности. Как же так?

Необходимо понимать более тонкий способ рассмотрения второго эксперимента по обнаружению корпускулярного аспекта фотонов; как поясняет Гейзенберг: «Если теперь результат эксперимента свидетельствует о нахождении фотона, скажем, в отраженной части [волнового] пакета [путь А],то вероятность обнаружения фотона в другой части луча немедленно становится равной нулю. Тогда эксперимент с положением отраженного пакета оказывает своего рода действие... в отдаленной точке, занимаемой проходящим пакетом, и наблюдатель видит [что] это действие распространяется со скоростью, превышающей скорость света. Однако очевидно также, что этот вид действия никогда не может быть использован для передачи сигнала, так что он... не противоречит постулатам теории относительности».

Это действие на расстоянии составляет важный аспект коллапса («схлопывания») волнового пакета. Для обозначения такого действия используется специальный термин нелокалъностъ —действие, передаваемое без сигналов, которые распространяются в пространстве. Сигналы, которые распространяются в пространстве за конечное время, вследствие установленного

Эйнштейном предела скорости, называются локальными сигналами.Поэтому коллапс квантовой волны не локален.

Отметьте, что утверждение Гейзенберга справедливо и при наличии, и при отсутствии отложенного выбора. С квантовой точки зрения важно то, что мы выбираем тот или иной исход, который и проявляется; когда во времени мы выбираем этот исход, не имеет значения. Волна разделяется всякий раз, когда есть два доступных пути, но разделение происходит только в потенции. Когда, позднее, мы наблюдаем фотон на одном пути, потому что выбираем такой исход (удаляя зеркало из точки Р), вызываемое нами «схлопывание» волны на одном пути оказывает на волну на другом пути нелокальное влияние, которое сводит на нет возможность видения фотона на этом другом пути. Подобное нелокальное влияние может показаться ретроактивным (т. е. передающимся назад во времени), однако мы влияем только на потенциальные возможности; здесь нет никакого нарушения закона причинности, поскольку, как говорит Гейзенберг, мы не можем передавать сигнал с помощью такого рода устройства [26].

В своем поиске смысла и структуры реальности мы сталкиваемся с той же загадкой, с которой столкнулся Винни-Пух:

—  Привет, Пух, —сказал Пятачок, — что это ты делаешь ?

—  Охочусь, - сказал Пух.

—  Охотишься ? На кого ?

—  Кое-кого выслеживаю, — ответил Винни-Пух очень таинственно.

—  Кого выслеживаешь? — спросил Пятачок, подходя ближе.

—  Именно об этом я сам себя спрашиваю. В этом весь вопрос — кого ?

—  И как ты думаешь, что ты ответишь на этот вопрос ?

—  Придется подождать, пока я его догоню, — сказал Винни-Пух.

—  Взгляни-ка сюда. — Он показал на землю прямо перед собой. — Что ты тут видишь?

—  Следы, — сказал Пятачок. — Отпечатки лап! — Он даже слегка взвизгнул от волнения.

—  Ой, Пух! Ты думаешь, это... это страшный Бука?

—  Может быть, — сказал Пух. — Иногда как будто он, а иногда как будто и не он. По следам разве угадаешь?..

—  ...Минуту, — сказал Винни-Пух, подняв лапу. Он сел и задумался так глубоко, как только мог. Потом он примерил свою лапу к одному из Следов... а потом дважды почесал за ухом и встал. — Да, — сказал Винни-Пух. — Теперь я понял. Я был глупым простофилей, — сказал он.

—  И я самый бестолковый медвежонок на свете!

—  Что ты! Ты самый лучший медвежонок на свете! — утешил его Кристофер Робин.

Действительно, несколько озадачивает то, что согласно новой физике, следы «буки», которые оставляют электрон и другие субмикроскопические частицы в наших конденсационных камерах, — это просто расширение нас самих.

Классическая наука неизменно видела в мире только разделенность. Два века назад английский поэт-романтик Уильям Блейк писал:

Храни нас Бог от единообразного видения и ньютоновского сна.

Квантовая физика — это ответ на молитву Блейка. Современный ученый, усвоивший урок принципа дополнительности, не настолько глуп, чтобы «зацикливаться» на (кажущейся) разделенности.

Квантовые измерения выводят наше сознание на сцену так называемого объективного мира. В эксперименте отложенного выбора нет никакого парадокса, если мы отказываемся от представления о том, что неизменный и независимый мир существует, даже когда мы его не наблюдаем. В конечном счете все сводится к тому, что вы, наблюдатель, хотите видеть. Это напоминает мне об одной дзэнской истории.

Два монаха спорили о движении флага на ветру Один говорил: «Флаг движется». Другой возражал: «Нет, это ветер движется». Третий монах, проходивший мимо спорщиков, высказал замечание, которое бы одобрил Уиллер: «Флаг не движется. Ветер не движется. Движется ваш ум».

ГЛАВА 6. ДЕВЯТЬ ЖИЗНЕЙ КОШКИ ШРЁДИНГЕРА

Многим основателям квантовой физики было тяжело принимать ее странные следствия. Сам Шрёдингер выразил свои сомнения по поводу интерпретации квантовой механики в терминах волн вероятности в парадоксе, который в настоящее время известен под названием «Кошка Шрёдингера».

Предположим, что мы помещаем кошку в клетку с радиоактивным атомом и счетчиком Гейгера. Радиоактивный атом будет распадаться в соответствии с законами вероятности. Если атом распадается, то счетчик Гейгера сработает и включит молоток, молоток разобьет бутылку с ядом, и яд убьет кошку. Допустим, что вероятность того, что это случится в течение часа, составляет 50% (рис. 21).

Самосознающая вселенная. Как сознание создает материальный мир img_21.png

Рис. 21. Парадокс кошки Шрёдингера

Тогда каким образом квантовая механика описывает состояние кошки по прошествии часа? Разумеется, если мы посмотрим, то обнаружим, что кошка либо жива, либо мертва. А что, если мы не посмотрим? Вероятность того, что кошка мертва, составляет 50%. Вероятность того, что кошка жива, тоже равна 50%.

Если мыслить классически, как требует материальный реализм, и руководствоваться принципами детерминизма и причинной непрерывности, то можно было бы провести мысленную аналогию с ситуацией, в которой некто подбросил монету, а потом накрыл ее ладонью. Мы не знаем, что выпало — орел или решка, но, разумеется, выпало либо то, либо другое. Кошка либо жива, либо мертва, с вероятностью каждого исхода, равной 50%. Мы просто не знаем, какой исход реализовался на самом деле. Отнюдь не такой сценарий предполагает математика квантовой механики. Квантовая механика подходит к вероятностям совсем иначе. Она описывает состояние кошки в конце часа как наполовину мертвое, наполовину живое. Внутри ящика имеется вполне буквально «когерентная суперпозиция наполовину живой и наполовину мертвой кошки» — как это звучит на техническом жаргоне квантовой физики. Парадокс кошки, которая жива и мертва одновременно — это следствие того, как в квантовой механике делаются вычисления. Сколь бы странными ни были следствия этой математики, мы должны относиться к ней серьезно, поскольку та же математика дарит нам чудеса транзисторов и лазеров.

Эту абсурдную ситуацию резюмирует следующая пародия из «Книги старого опоссума о практичных кошках» Т. С. Элиота:

вернуться

26

И тем не менее в конце прошлого века уже упоминавшаяся группа Алена Аспекта из Орси (Франция) теоретически доказала возможность передачи информации с помощью нелокального действия на расстоянии. (Заинтересованные читатели могут найти оригинальные статьи А. Аспекта, а также другие интересные обсуждения квантовой нелокальности в журнале Foundations of Physicsза 1975—1985 гг.) Кроме того, уже упоминавшаяся теория скалярного поля открывает возможность объяснения мгновенной передачи влияния как распространения возмущения скалярного поля.В частности, авторы этой теории объясняют возникновение Вселенной мгновенным распространением возмущения скалярного поля, вызванного квантовой флуктуацией. Поскольку энергия этого поля практически бесконечна, сложилась ситуация, в которой первичное возмущение бесконечно усиливалось, что и привело к своего рода «объемному» Большому Взрыву. — Прим. пер.