Изменить стиль страницы

Таким образом, большинству звезд на предпоследнем этапе эволюции суждено превратиться в водородную глыбу, размер которой примерно в семьдесят раз меньше Луны. По мере того как процесс распада протона подходит к завершению, эта глыба продолжает испаряться. Таким образом, становится понятна окончательная судьба белых карликов: от них не остается ничего. Вся энергия звезды, в конечном итоге, излучается в межзвездное пространство. И вновь термодинамика, в конечном итоге, побеждает гравитацию.

Нейтронные звезды, эти редкие и плотные родичи белых карликов, испаряются аналогичным образом. Распад протона обеспечивает нейтронные звезды примерно такой же полной светимостью: около четырехсот ватт. Нейтронные звезды при этом намного меньше белых карликов. Поэтому чтобы иметь такую же мощность излучения, поверхность этих звезд должна быть горячее: около трех градусов Кельвина в случае типичной нейтронной звезды. Примерно такую температуру имеет современное реликтовое излучение, определяющее минимальную температуру, имеющуюся во Вселенной в наши дни. В период же с тридцать седьмой по тридцать девятую космологические декады нейтронные звезды, испускающие слабый свет при температуре в три градуса Кельвина, будут одними из самых горячих объектов во Вселенной.

Однако в заключительные фазы своей жизни нейтронные звезды несколько отличаются от белых карликов. По мере того как в процессе протонного распада нейтронная звезда теряет свою массу, она становится менее плотной и, в конечном итоге, вырождение нейтронов исчезает. Как только нейтроны перестают быть вырожденными, они преобразуются в протоны, электроны и антинейтрино. Этот переход происходит, когда масса звезды падает ниже одной десятой массы Солнца, а ее радиус равен примерно ста шестидесяти четырем километрам. На этом этапе плотность все еще достаточно велика для того, чтобы электроны оставались вырожденными, и звезда весьма напоминает белый карлик. Оставшийся звездный объект, подобный белому карлику, продолжает терять массу по мере того, как распадается все большее число протонов, до тех пор пока не исчезнет вырожденность электронов. Вот тогда наш объект превращается в ледяную водородную глыбу, масса которой не превышает одной тысячной массы Солнца. Затем распадаются протоны в кристаллической решетке, что, в конце концов, приводит к полному испарению звезды и превращению ее в излучение и мелкие частицы. В конечном итоге от нейтронных звезд не остается ничего.

Долгосрочная судьба планет имеет аналогичную историю. Планеты тоже состоят, главным образом, из протонов, которые распадаются, в результате чего планета испаряется, превращаясь в излучение. К тому времени, когда оставшиеся планеты начнут разрушаться в процессе распада протонов, они уже давно будут оторваны от родительских звезд и будут блуждать в полном одиночестве по необъятным просторам космоса. По мере медленного разрушения планеты вырабатывают довольно скромную мощность: всего один милливатт в случае планеты типа Земли. И хотя изначально планеты содержат больше тяжелых элементов, чем звезды, в свое время они тоже превратятся в застывший водород. Даже планета, состоящая из чистого железа, разрушится к тридцать восьмой космологической декаде — примерно через шесть периодов полураспада протона. В течение тридцать девятой космологической декады планета эволюционирует из маленького комка водородных кристаллов в полностью разрушенное состояние.

К сороковой космологической декаде почти все протоны во Вселенной распадутся, а вырожденные звездные остатки исчезнут. На смену этим, на первый взгляд, твердым и неразрушимым звездным остаткам придет рассеянное море излучения, состоящего, главным образом, из протонов и нейтрино с небольшой примесью позитронов и электронов. Вселенная приобретет новый характер. Изредка на этой гигантской арене поразительного запустения встречаются уединенные области крайне искривленного пространства-времени, так называемые черные дыры. По завершении эпохи распада черные дыры, содержащие от одной до нескольких миллиардов солнечных масс, упорно стремятся попасть в следующую эпоху.

Глава 4

Эпоха черных дыр

40 < η < 100

Черные дыры наследуют Вселенную, деформируют пространство-время, испаряют свою массу-энергию и погибают во взрыве.

Девяностая космологическая декада, на краю скопления черных дыр:

Боб был в замешательстве. Его расплывчатое тело, содержащее более миллиона солнечных масс, захлестнул пугающий калейдоскоп ощущений. Несмотря на свои почти 10 79лет, он никогда не испытывал ничего, что хотя бы отдаленно напоминало эту внутреннюю бурю. Деформирующая волна достигла почти невыносимого максимума, а потом внезапно спала, оставив после себя ощущение тошноты — чувство, которое можно было бы описать как морскую болезнь, если бы в эту пору еще существовали понятия воды и океанов. Позитроны и электроны в его мозге медленно двигались по спирали вычисления, и мало-помалу он осознал, что столь сильный дискомфорт был вызван вспышкой гравитационного излучения. Две черные дыры слились где-то вдалеке, создавая гигантский гравитационный потенциал. Черные дыры оставались одной из немногих опасностей для представителей его вида, поэтому Боб почувствовал облегчение от мысли о том, что это столкновение двух небесных объектов произошло очень и очень далеко.

Бобу, конечно, рассказывали о предельной важности черных дыр. Их зловещее сияние омывало Вселенную разреженным морем излучения и служило источником энергии, позволявшим существование практически всего, в том числе и самой жизни. Он знал, что без необходимой энергии, извлекаемой из испарения черных дыр, Вселенная была бы мертвой и скучной.

И хотя волнения Боба носили чисто практический характер, среди представителей его вида были и такие, кто пытался понять свойства Вселенной в первые 10 40лет ее существования, «в эти почти невообразимо краткие мгновения после Большого взрыва». Особенно модной была совершенно нелепая гипотеза, утверждавшая, будто высокосложные структуры могли основываться на взаимодействии электронов с протонами и нейтронами. Существование протонов и нейтронов, экзотических частиц с коротким временем жизни, которые уже давным-давно распались, с энтузиазмом приняли самые смелые современные физики, и в то же время нарекли «безумной спекуляцией» те, кто был «сшит» из более консервативной материи.

Когда распадаются протоны, Вселенная теряет пыль, белых карликов, замерзшую Землю и вещество, которое мы встречаем каждый день. После исчезновения протонов структура Вселенной претерпевает значительные изменения. Самыми важными сохранившимися объектами являются черные дыры, которые по завершении эпохи распада остаются в целости и сохранности. Черные дыры — это звездоподобные объекты, хотя и обладающие некоторыми очень необычными свойствами. Пережив белых карликов, они наследуют ту роль, которую в наше время выполняют обычные звезды. Когда Вселенная достигает сороковой космологической декады, черные дыры «берут в свои руки» верховную власть. Они дают свет, тепло и динамику, позволяющие Вселенной оставаться интересным местом.

Черные дыры разбросаны по невероятно разреженному морю элементарных частиц. Представьте себе просеивание через большие объемы этого почти идеального вакуума. Время от времени попадается электрон — отрицательно заряженная частица, вращающаяся по орбите вокруг ядра современных атомов и текущая по проводам электрической цепи. В результате длительных поисков было обнаружено, что каждому сохранившемуся электрону соответствует антиматериальный партнер — позитрон. Каждый позитрон несет единичный положительный заряд, так что Вселенная в целом остается электрически нейтральной. В результате дальнейших поисков обнаруживаются невидимые обитатели межзвездных пустот: аксионы, различные ароматы нейтрино и т. п.

Вселенная в эпоху черных дыр погружена в море низкоэнергетических фотонов — света, длины волн которого слишком велики, чтобы их мог различить глаз человека. Свет, улавливаемый нашими глазами, состоит из фотонов, длины волн которых составляют около половины микрона (половина одной тысячной миллиметра). Длина волны типичного излучения в сороковую космологическую декаду гораздо больше — почти километр. Чтобы иметь способность «видеть» в эпоху черных дыр, нужно иметь глаза размером с материки.