Изменить стиль страницы

ТЕМА НОМЕРА: Вторжение электронных словарей

Автор: Владимир Гуриев

Я уверен, что через пятьдесят лет станет возможным программировать работу машин с емкостью памяти около 106 так, чтобы они могли играть в имитацию настолько успешно, что шансы среднего человека установить присутствие машины через пять минут после того, как он начнет задавать вопросы, не поднимались бы выше 70%. Первоначальный вопрос «могут ли машины мыслить?» я считаю слишком неосмысленным, чтобы он заслуживал рассмотрения. Тем не менее я убежден, что к концу нашего века употребление слов и мнения, разделяемые большинством образованных людей, изменятся настолько, что можно будет говорить о мыслящих машинах, не боясь, что тебя поймут неправильно.

Алан Тьюринг, «Может ли Машина мыслить?», 1956 (1950) Перевод Ю. Данилова

И в книге, и в интервью Джефф Хокинc ясно дает понять, кто здесь д’Артаньян. Естественно, что создатель новой теории считает все остальные подходы ошибочными – а оппонентам в общем-то и крыть нечем, поскольку успехи разработчиков ИИ по части разработки собственно машин с интеллектом очень и очень скромны. Однако наполеоновским планам компании Numenta угрожает не только то, что Хокинc может ошибаться, но и отсутствие ответа на главный вопрос ИИ: а можно ли в принципе создать хоть сколько-нибудь «разумный» компьютер.

Знаменитое эссе Алана Тьюринга, отрывок из которого вынесен в эпиграф, называется «Может ли Машина мыслить?»[Собственно, оригинальная статья называется «Compu-ting machinery and intelligence». А название «Can the Machine think?» было дано одной из посмертных републикаций, откуда перекочевало в классический русский перевод], но сам ученый отверг столь нечеткую формулировку, предложив использовать в качестве критерия разумности машины процедуру, которую позднее назвали тестом Тьюринга. Если машина сможет убедительно имитировать человеческие реакции, значит, ее можно считать мыслящей, и точка. Тьюринг не пытался ответить на вопрос, могут ли компьютеры обладать независимым сознанием, но нигде не отрицал это в явном виде. Больше того, из приведенных в конце статьи реплик на возражения оппонентов слегка пристрастный читатель вполне может заключить, что Тьюринг вовсе не исключал такой возможности, но, похоже, считал преждевременным ее обсуждение[Очень неплохой комментарий к обсуждаемой статье Тьюринга можно найти на plato.stanford.edu/entries/turing-test].

Тем не менее именно этот некорректный вопрос о сознании машин не давал покоя как разработчикам систем ИИ, так и поначалу восторженным, а потом все более разочарованным наблюдателям. Неосторожные заявления самих разработчиков и усилия фантастов, сформировавших в общественном сознании человекоподобный образ машинного интеллекта, привели к ожиданиям, которые наука не могла и, в конечном счете, не смогла удовлетворить. А в начале 1980-х гг. выяснилось, что и с тестом Тьюринга, пройти который должен каждый уважающий себя машинный интеллект, тоже не все так просто.

Китайская комната
Журнал «Компьютерра» № 3 от 24 января 2006 года _623a6l1.jpg

В 1980 году в журнале The Behavioral and Brain Sciences была опубликована статья «Разум, мозг и программы» («Minds, Brains, and Programs») американского философа Джона Серля (John Searle). Серль был не первым, кто задумался о том, могут ли современные подходы вообще привести к созданию разумных машин, но ему первому удалось придумать красивую и наглядную модель, бросающую тень на святой Грааль разработчиков ИИ.

«Представьте себе, – писал Серль, – что я нахожусь в комнате с корзинами, заполненными табличками с китайскими иероглифами. Я не знаю китайский. Для меня все эти иероглифы в буквальном смысле китайская грамота. Но у меня есть подробная инструкция на английском языке, описывающая взаимосвязи между этими символами. Мне не нужно понимать значение китайских иероглифов, чтобы производить с ними действия, описанные в инструкции.

Вне этой комнаты находится группа людей, понимающих китайский. Они передают мне таблички с иероглифами, я же на основании инструкции отдаю им другие таблички с иероглифами. Этих людей можно назвать «программистами», меня – «компьютером», а корзины с табличками – «базой данных». Переданные мне таблички назовем «вопросами», переданные мною – «ответами».

А теперь представьте, что инструкция составлена таким образом, что мои «ответы» неотличимы от тех, которые бы дал человек, свободно владеющий китайским. В этом случае я прохожу тест Тьюринга. Однако мы-то с вами знаем, что я не понимаю китайский язык и никогда не смогу его выучить таким способом, потому что не существует способа, с помощью которого я мог бы понять значение этих иероглифов»[Цитируется по более поздней публикации «Is The Brain’s Mind a Computer Program?», опубликованной в Scientific American в январе 1990 года. Интересно, что эта статья тоже начинается с привычного вопроса: «Может ли машина мыслить?» В ней Серль отвечает на многочисленные возражения оппонентов и уточняет – точнее, ужесточает – свою точку зрения, отрицая принципиальную возможность создания работающей (то есть мыслящей) программной модели человеческого мозга].

Так, по Серлю, устроен и компьютер, оперирующий символами, но не понимающий их значения. Из синтаксиса невозможно вывести семантику. А значит, невозможно и построить мыслящую машину – по крайней мере, оставаясь в рамках формального подхода.

Несмотря на внешнюю простоту, аргумент Серля оказал очень сильное воздействие на сообщество разработчиков ИИ, и если сегодня страсти немного поутихли, то лишь потому, что приверженцы противоположных точек зрения уже обменялись всеми возможными аргументами; к тому же тех, кто верит в возможность создания машинного разума[Для этого направления разработок ИИ Серль ввел термин Strong AI – в противоположность Weak AI, где такая глобальная задача не ставится, а системы ИИ рассматриваются только как инструмент для выполнения определенных функций] и работает над решением этой задачи, сегодня не так уж много.

Джефф Хокинс в своей книге использует «китайскую комнату» для критики существующих подходов, однако полностью игнорирует расширенную аргументацию Серля [Что для человека, согласного с концепцией функционализма (см. интервью), довольно странно]: «Можно представить себе совершенную, до последнего синапса, компьютерную модель пептидов гипоталамуса. С тем же успехом мы можем вообразить симуляцию окисления углеводородов в автомобильном двигателе или симуляцию процесса переваривания пиццы. Эмуляция работы мозга ничуть не реальнее эмуляции двигателя или работы желудка. Вы не сможете заправить автомобиль „эмулированным“ бензином и не сможете переварить пиццу, запустив нужную программу. Очевидно, что и эмуляция процессов познания точно так же не воспроизведет сопутствующие нейробиологические эффекты»[«Is The Brain’s Mind a Computer Program?», Scientific American, 1990].

Квантовый компьютер Роджера Пенроуза

Философских школ, по-разному определяющих, что такое разум и сознание, сегодня немногим меньше, чем философов, однако все подходы можно классифицировать следующим образом: оптимистическая (в контексте Strong AI) точка зрения гласит, что наше мышление поддается алгоритмизации, тогда как пессимистическая предполагает, что деятельность человеческого разума ни к вычислениям, ни к алгоритмам свести нельзя, а значит, и нельзя «повторить» в компьютерном коде.

Аргументы в пользу пессимистической точки зрения могут быть самые разные – от полной метафизики до чистой математики, к которой прибег известный британский физик Роджер Пенроуз. Отталкиваясь от теоремы Гёделя о неполноте, Пенроуз заключил, что разум нельзя смоделировать алгоритмически, и предложил свою теорию, объясняющую, какие физические процессы стоят за мышлением (подробнее о теории Пенроуза см. статью Леонида Левковича-Маслюка «Физическая личность» в «КТ» #268). Согласно гипотезе Пенроуза-Хамероффа, неалгоритмизируемости процессов мышления мы обязаны квантовым эффектам, возникающим в микротрубках нейронов головного мозга. Экспериментального подтверждения эта теория пока не получила, зато вызвала шквал критики со всех сторон, поскольку не пришлась ко двору ни нейрофизиологам, ни физикам (один из них даже подсчитал, что предложенная квантовая модель разума будет работоспособна только при температуре, близкой кабсолютному нулю), ни уж тем более разработчикам ИИ.