Изменить стиль страницы

57:2.4600,000,000,000 years ago the height of the Andronover energy-mobilization period was attained; the nebula had acquired its maximum of mass. At this time it was a gigantic circular gas cloud in shape somewhat like a flattened spheroid. This was the early period of differential mass formation and varying revolutionary velocity. Gravity and other influences were about to begin their work of converting space gases into organized matter.

3. THE SECONDARY NEBULAR STAGE

57:3.1 The enormous nebula now began gradually to assume the spiral form and to become clearly visible to the astronomers of even distant universes. This is the natural history of most nebulae; before they begin to throw off suns and start upon the work of universe building, these secondary space nebulae are usually observed as spiral phenomena.

57:3.2 The near-by star students of that faraway era, as they observed this metamorphosis of the Andronover nebula, saw exactly what XX century astronomers see when they turn their telescopes spaceward and view the present-age spiral nebulae of adjacent outer space.

57:3.3 About the time of the attainment of the maximum of mass, the gravity control of the gaseous content commenced to weaken, and there ensued the stage of gas escapement, the gas streaming forth as two gigantic and distinct arms, which took origin on opposite sides of the mother mass. The rapid revolutions of this enormous central core soon imparted a spiral appearance to these two projecting gas streams. The cooling and subsequent condensation of portions of these protruding arms eventually produced their knotted appearance. These denser portions were vast systems and subsystems of physical matter whirling through space in the midst of the gaseous cloud of the nebula while being held securely within the gravity grasp of the mother wheel.

57:3.4 But the nebula had begun to contract, and the increase in the rate of revolution further lessened gravity control; and ere long, the outer gaseous regions began actually to escape from the immediate embrace of the nebular nucleus, passing out into space on circuits of irregular outline, returning to the nuclear regions to complete their circuits, and so on. But this was only a temporary stage of nebular progression. The ever-increasing rate of whirling was soon to throw enormous suns off into space on independent circuits.

57:3.5 And this is what happened in Andronover ages upon ages ago. The energy wheel grew and grew until it attained its maximum of expansion, and then, when contraction set in, it whirled on faster and faster until, eventually, the critical centrifugal stage was reached and the great breakup began.

57:3.6500,000,000,000 years ago the first Andronover sun was born. This blazing streak broke away from the mother gravity grasp and tore out into space on an independent adventure in the cosmos of creation. Its orbit was determined by its path of escape. Such young suns quickly become spherical and start out on their long and eventful careers as the stars of space. Excepting terminal nebular nucleuses, the vast majority of Orvonton suns have had an analogous birth. These escaping suns pass through varied periods of evolution and subsequent universe service.

57:3.7400,000,000,000 years ago began the recaptive period of the Andronover nebula. Many of the near-by and smaller suns were recaptured as a result of the gradual enlargement and further condensation of the mother nucleus. Very soon there was inaugurated the terminal phase of nebular condensation, the period which always precedes the final segregation of these immense space aggregations of energy and matter.

57:3.8 It was scarcely 1,000,000 years subsequent to this epoch that Michael of Nebadon, a Creator Son of Paradise, selected this disintegrating nebula as the site of his adventure in universe building. Almost immediately the architectural worlds of Salvington and the 100 constellation headquarters groups of planets were begun. It required almost 1,000,000 years to complete these clusters of specially created worlds. The local system headquarters planets were constructed over a period extending from that time to about five billion years ago.

57:3.9300,000,000,000 years ago the Andronover solar circuits were well established, and the nebular system was passing through a transient period of relative physical stability. About this time the staff of Michael arrived on Salvington, and the Uversa government of Orvonton extended physical recognition to the local universe of Nebadon.

57:3.10200,000,000,000 years ago witnessed the progression of contraction and condensation with enormous heat generation in the Andronover central cluster, or nuclear mass. Relative space appeared even in the regions near the central mother-sun wheel. The outer regions were becoming more stabilized and better organized; some planets revolving around the newborn suns had cooled sufficiently to be suitable for life implantation. The oldest inhabited planets of Nebadon date from these times.

57:3.11 Now the completed universe mechanism of Nebadon first begins to function, and Michael’s creation is registered on Uversa as a universe of inhabitation and progressive mortal ascension.

57:3.12100,000,000,000 years ago the nebular apex of condensation tension was reached; the point of maximum heat tension was attained. This critical stage of gravity-heat contention sometimes lasts for ages, but sooner or later, heat wins the struggle with gravity, and the spectacular period of sun dispersion begins. And this marks the end of the secondary career of a space nebula.

4. TERTIARY AND QUARTAN STAGES

57:4.1 The primary stage of a nebula is circular; the secondary, spiral; the tertiary stage is that of the first sun dispersion, while the quartan embraces the second and last cycle of sun dispersion, with the mother nucleus ending either as a globular cluster or as a solitary sun functioning as the centre of a terminal solar system.

57:4.275,000,000,000 years ago this nebula had attained the height of its sun-family stage. This was the apex of the first period of sun losses. The majority of these suns have since possessed themselves of extensive systems of planets, satellites, dark islands, comets, meteors, and cosmic dust clouds.

57:4.350,000,000,000 years ago this first period of sun dispersion was completed; the nebula was fast finishing its tertiary cycle of existence, during which it gave origin to 876,926 sun systems.

57:4.425,000,000,000 years ago witnessed the completion of the tertiary cycle of nebular life and brought about the organization and relative stabilization of the far-flung starry systems derived from this parent nebula. But the process of physical contraction and increased heat production continued in the central mass of the nebular remnant.

57:4.510,000,000,000 years ago the quartan cycle of Andronover began. The maximum of nuclear-mass temperature had been attained; the critical point of condensation was approaching. The original mother nucleus was convulsing under the combined pressure of its own internal-heat condensation tension and the increasing gravity-tidal pull of the surrounding swarm of liberated sun systems. The nuclear eruptions which were to inaugurate the second nebular sun cycle were imminent. The quartan cycle of nebular existence was about to begin.

57:4.68,000,000,000 years ago the terrific terminal eruption began. Only the outer systems are safe at the time of such a cosmic upheaval. And this was the beginning of the end of the nebula. This final sun disgorgement extended over a period of almost 2·109 years.