Поначалу фанера склеивалась растительными или животными клеями, поэтому она совершенно лишена была влагостойкости и чуть ли не стала почти что бранным словом. Внедрение фенольных клеев все изменило и, между прочим, занятнейшим образом проиллюстрировало, как может трансформироваться отношение к материалу. Современная фанера на фенольных клеях совершенно не поддается воде - она не расслаивается, когда намокает. Поэтому она широко используется в судостроении.
Как и следовало ожидать, размер фанеры при колебаниях влажности изменяется вдвое меньше, чем у обычной древесины. Это значит, что максимальные изменения размеров в двух направлениях составят около 5%. На практике эта величина значительно ниже. Но если поверхностные слои высушиваются, например на горячем солнце, они оказываются под напряжением, растягивающим их поперек волокон. В результате фанера может покрыться густой сеткой малых трещинок. Сами по себе они не слишком страшны, но незакрашенные складки становятся ловушками для влаги и бактерий, что таит в себе известные неприятности. Горячее прессование убивает почти все бактерии и грибки, но после растрескивания попадающая на древесину инфекция в сочетании с водой приводит к быстрому ее гниению.
(обратно)
Аэропланы
Никогда не следует относиться с презрением к каким бы то ни было конструктивным формам, в том числе и к биплану, построенному на струнах и стержнях. Главный показатель, который определяет выбор материалов и конструктивных форм,- это отношение нагрузки на конструкцию к ее размерам. Когда нагрузки сравнительно невелики по отношению к размерам, обычно лучше сосредоточить сжимающие силы в нескольких компактных стержневых элементах (стойках) и распределить растяжение в обшивке и струнах. Именно так построены оснастка парусных кораблей, палатки, ветряные мельницы. С некоторыми оговорками это справедливо и для воздушных шаров. Любые другие решения в подобных случаях приводили бы к тяжелым, дорогим и менее удобным конструкциям.
По понятным причинам все первые самолеты имели очень малую нагрузку на крыло. Размеры во многих случаях были не намного меньше, чем у соответствующих современных самолетов, ну а вес такого самолета составлял менее 10% веса современной машины с жесткой обшивкой. В таких условиях конструкция из ткани, натянутой на каркас из древесины и бамбука, была и логичной, и эффективной. При мощности тогдашних двигателей аэроплан другой конструкции просто не поднялся бы с земли. Форма биплана позволяла построить отличную решетчатую ферму и кессоны - очень жизнеспособные и легкие конструкции. Массивные элементы были нужны только для того, чтобы воспринимать сжатие, и, поскольку главная опасность в таких условиях крылась в потере устойчивости, эти элементы должны были быть возможно более простыми: лучше всего этим целям служили бамбук и ель. Для растянутых элементов использовалась рояльная проволока. Однако соединение бамбуковых элементов, работающих на растяжение, всегда было серьезной проблемой.
Такой способ конструирования давал отличные прочные самолеты лишь тогда, когда конструктор твердо знал, какой элемент будет нагружаться растяжением, а какой - сжатием. Ведь если стойка при необходимости и могла принять на себя растяжение, то уж проволока никогда не сопротивляется сжатию. В некоторых бипланах посложней не всегда можно было проследить пути, по которым передается нагрузка. Недаром в ходу была банальная шутка: лучший способ проверить правильность оснастки крыла биплана - посадить в середину канарейку; если ей удастся вылететь наружу - в конструкции какой-то непорядок.
Печально известен случаи с бипланом “Кафедральный собор”. Его создатель С.Ф. Коуди питал пристрастие к сложной путанице расчалок, но ему не хватало технической грамотности. Мой дед, один из пионеров авиации, рассказывал мне, что однажды он долго спорил с Коуди по поводу того, будет ли в полете какой-то элемент испытывать растяжение или сжатие. Коуди настаивал, что элемент будет растянут, и поставил струну. Правота моего деда обернулась для Коуди трагически - он погиб через несколько минут после взлета. Есть какая-то ирония судьбы в том, что ситуация с “Кафедральным собором” была прямо противоположна неприятностям с кладкой каменных соборов: они рушились из-за того, что в тех местах, где, по предположению строителей, должно было быть сжатие, оказывалось растяжение.
Потребовалось немало времени и жизней, прежде чем были в достаточной степени изучены и поняты условия нагружения, в которых оказывается самолет в полете. Англичане во многом обязаны этим достижением группе одаренных людей, собравшихся в Фарнборо в первую мировую войну (знаменитая Чадлайфская кучка[42]).
Принципы расчета и испытаний самолетов на прочность остаются и сейчас, в эпоху сверхзвуковых истребителей, во многом теми же, что и в годы деревянных бипланов, хотя в практике этих операций появилось много нового.
Когда самолет спроектирован и построен, полноразмерный образец его должен быть проверен на прочность и жесткость. Испытания на жесткость сравнительно просты, но прочностные испытания иногда требуют громоздких и сложных приспособлений. В 1914 году самолет обычно переворачивали вверх ногами и затем на плоскости крыла укладывали мешки с песком или свинцовой дробью, распределяя их так, чтобы они представляли аэродинамическую нагрузку на самолет в самых опасных условиях полета, например в случае выхода из пике. Довольно скоро нагрузки на самолет стали слишком большими и воспроизвести их этим методом уже не удавалось (хотя мешки с дробью иногда все еще используются для кое-каких простых испытаний). В наши дни обычно прибегают к помощи гидравлического домкрата, который передает нагрузку на крыло через изощренную систему рычагов, напоминающую родословное древо. Каждая ветвь этого древа заканчивается креплением на поверхности крыла. Благодаря тому, что точек крепления много, распределенный характер аэродинамической нагрузки можно имитировать очень хорошо (рис. 42).
Рис. 42. Схема испытания крыла самолета. Нагрузка прикладывается к крылу в сотнях точек, распределенных по обеим поверхностям. 1 - стальная рама; 2 - гидравлический домкрат: 3 - крыло; 4 - имитация крепления к фюзеляжу.
Лучшие образцы деревянных бипланов, такие, как “Авро-504” и серия “Мотс” (“Мотылек”), были почти вечными. Разрушить их можно было, разве что врезав со всего маху в землю. Чувство конструктивной надежности в полете на таких самолетах, которые держались на стойках и расчалках, было очень приятным, настроение могли испортить лишь двигатели. Монопланы с консольными крыльями казались намного опасней.
Однако с ростом нагрузок общая тенденция проектирования твердо повернулась в сторону монококовой конструкции, то есть моноплана с жесткой обшивкой. Нагрузки в ней по возможности воспринимались обшивкой. Тонкая мембрана отлично сопротивляется растяжению; трудности связаны здесь с тем, как заставить ее воспринимать сжатие без выпучиваний. На практике этот вопрос решил компромисс: тонкая обшивка разделила нагрузку с лонжеронами и стрингерами. Вся эта довольно сложная конструкция образовала жесткую на изгиб, а следовательно, устойчивую против выпучивания оболочку.
Отличным примером первых таких самолетов был DC-3 позже известный как “Дакота”. Затем последовали “Спитфайер” и многие другие знаменитые самолеты второй мировой войны. Все они были металлическими, алюминиевые листы обшивки клепались к стрингерам уголкового профиля. Такая конструкция оказалась по весовой эффективности практически эквивалентной деревянно-тканевой. Преимуществами ее были более гладкая наружная поверхность и силовая рама, почти полностью исключавшая уход за ней. Конструкция такого типа остается и сейчас основной при проектировании самолетов.
В 1939 году широко распространилось мнение, что деревянным самолетам пришел конец. Может быть, так оно и случилось бы, не возникни во время войны нехватка алюминия, а также оборудования и квалифицированных кадров. Кроме того, мебельные фирмы сократили производство, да и время разработки деревянного самолета всегда было намного короче, чем металлического.