Изменить стиль страницы

Для практических целей собственные данные (результаты нескольких проектов, за которыми вы наблюдали внутри своей компании) оказываются «крупнозернистыми», а отраслевые тенденции, включающие тысячи проектов, оказываются гладкими. Без больших потерь строгости всегда можно округлить «зернистую» кривую до более гладкого близкого эквивалента.

Диаграммы риска часто имеют весьма характерные формы. Можно, например, встретить такие, которые математики называют нормальными или симметричными относительно средней точки:

Вальсируя с медведями pic_18.jpg

Обычно более распространены асимметричные диаграммы, которые выглядят так:

Вальсируя с медведями pic_19.jpg

<…> в том, что человеческая деятельность имеет тенденцию к именно <…> симметрии, сравнительно сильнее сгруппированной к одному из <…> обычно к левому, что указывает на более быстрое завершение). Наконец, есть класс странно выглядящих диаграмм, подобных следующим:

Вальсируя с медведями pic_20.jpg
Совокупные и причинные риски

До сих пор мы сваливали в одну кучу риски двух разных типов. Мы приводили как профили рисков для целых проектов, выраженные диаграммами неопределенности, где показаны сроки сдачи, общие затраты и усилия, или версии, которые могли быть готовыми к заданной дате. Кроме того, мы говорили и о сложных (многокомпонентных) рисках, вроде производительности труда персонала или текучести кадров. Первая категория состоит из того, что мы называем совокупными (агрегированными) рисками, поскольку они относятся к проекту в целом; а вторую категорию мы называем причинными (слагающими) рисками. Ясно, что эти категории связаны между собой. Неопределенность относительно совокупного результата является прямым результатом неопределенностей причинных факторов, ведущих к успеху или провалу:

Вальсируя с медведями pic_21.jpg

Процесс, происходящий между ними (процесс преобразования набора причинных рисков в совокупный риск) – это то, что мы будем рассматривать ниже в качестве «модели риска».

Как можно видеть, наша установка призывает использовать диаграммы риска как вход и выход этого процесса. Другими словами, каждый слагающий или причинный риск описан диаграммой риска, а мы используем автоматический подход для классификации причинных рисков и создания на их основе совокупного показателя риска, опять же в форме диаграммы.

Два типа моделей

То, что нам бы сейчас пригодилось, – комбинация генератора прогнозов и индикаторов риска. Это было бы чудесное устройство (или программный продукт). Сначала вам были бы заданы десятки вопросов о вашем проекте, а затем была бы выдана диаграмма риска, показывающая диапазон возможных дат завершения, каждая из которых отмечена неким уровнем неопределенности. За нас было бы сделано оценивание и проведен анализ неопределенности по тем оценкам, с которыми она связана.

Такое чудо служило бы отчасти для параметрического оценивания, отчасти для перекрывания неопределенности. Компонент для параметрического оценивания уже появился на рынке. Возможно, у вас уже есть этот инструмент, который либо приобретен вашей компанией, либо разработан собственными силами. Вы вливаете в него все, что вам известно о проекте (функциональные точки, параметры SLIM, предсказания модели СОСОМО[20] или что-то в этом духе), вместе с некоторой индивидуализирующей информацией об используемых вами процедурах и прошлой истории, а он выдает время, за которое проект может быть завершен.

Вальсируя с медведями pic_22.jpg

Мы предлагаем вам продолжать использовать ваш нынешний инструмент оценивания, каким бы он ни был (даже если это мокрый палец на ветру), и объединить его с моделью риска, о которой пойдет речь в следующих двух главах. Этот инструмент – ваша производственная модель, поскольку он показывает, сколько вы можете произвести за какое-то время, а модель риска показывает, сколько неопределенности будет связано с производственной оценкой. Работая вместе, эти две модели взаимодействуют так:

Вальсируя с медведями pic_23.jpg

Мы представили результат как график в форме диаграммы риска. Она показывает, насколько можно быть уверенным или неуверенным в возможности завершения проекта в любой заданный момент в будущем. Такая же схема может быть использована для создания диаграммы совокупного риска, показывающей версии, которые весьма вероятно подготовить к сроку сдачи в некотором диапазоне дат.

Единственным параметром, соединяющим эти модели, является N. Как предлагается на диаграмме, мы рекомендуем вам настроить свою производственную модель или инструмент оценивания на самый оптимистичный сценарий и определить N, то есть наилучший случай. Тогда модель риска перекрывает неопределенности для создания диаграммы совокупного риска.

Еще один нюанс относительно диаграмм риска

Для того, чтобы продемонстрировать следующую идею, придется построить очень грубую диаграмму неопределенности («крупнозернистость» сделает эффект более очевидным). Предположим, мы изучаем небольшие группы учащихся. У нас есть какие-то данные о них, включая вес в фунтах. Мы группируем данные по весу с шагом в 20 фунтов и обнаруживаем, что есть один ребенок в группе 101-120 фунтов, три – в группе 121-140 фунтов и два – в группе 141-160 фунтов:

Вальсируя с медведями pic_24.jpg

Этот график можно рассматривать как диаграмму неопределенности. Положим, один из ребят готов прыгнуть вам на колени, и вы используете этот тип диаграммы, чтобы посмотреть, какова неопределенность ожидаемого веса. Диаграмма показывает относительную вероятность каждой из трех весовых групп. Точно такие же данные можно показать в слегка иной форме, сгруппированными кумулятивно:

Вальсируя с медведями pic_25.jpg

Эту диаграмму следует читать несколько иначе: график показывает вероятность того, что ребенок, прыгающий вам на колени, будет принадлежать к указанной весовой группе или одной из предшествующих ей. Ниже первой весовой группы, вероятность нулевая (в классе нет ребят, весящих меньше 100 фунтов). Оказаться в верхней весовой группе и предшествующих ей можно со 100%-ной вероятностью, поскольку все дети в классе отвечают этому определению.

Обе диаграммы представляют одинаковые данные. Первая показывает относительную вероятность оказаться ребенком из данной группы, а вторая показывает кумулятивную вероятность оказаться ребенком в указанной группе или любой из предшествующих ей. Мы назовем эти типы диаграмм неопределенности дифференциальным (incremental) и кумулятивным, соответственно.

Теперь вернемся к реальному миру: ниже показана дифференциальная диаграмма риска для срока сдачи проекта и (непосредственно под ней) ее кумулятивный эквивалент:

Вальсируя с медведями pic_26.jpg

Здесь снова оба графика показывают одни и те же данные, просто представленные слегка по-разному. Заметно, что шкалу по вертикали при кумулятивной форме несколько легче понять: она показывает непосредственно вероятность от 0 до 100%. Любая дата влево от 1 января безнадежна (0%-ная вероятность), но если мы захотим пройти весь путь до конца декабря следующего года, есть 100%-ная вероятность того, что к сроку все будет готово. Факт, что 1 мая следующего года дает вероятность 50 на 50, сразу виден на кумулятивной диаграмме, а на дифференциальной нужно оценить площади слева и справа отданной точки.

вернуться

20

Конструктивная модель стоимости (Constructive Cost Model – СОСОМО), разработанная в конце 70-х годов Барри Боэмом. Построена на основе анализа ряда проектов, выполненных в основном в интересах Министерства Обороны США, устанавливает соответствие между размером системы в тысячах условных строк кода и «классом» проекта, с одной стороны, и трудоемкостью разработки системы, с другой стороны (прим. пер.)